363 research outputs found

    Regulatory T Cells and Inflammation: Better Late Than Never

    Get PDF
    In this issue of Immunity, Curotto de Lafaille et al. (2008) show that adaptive T regulatory cells control airway inflammation and that it is when they are generated that determines whether they function during acute or chronic inflammation

    FOXP3 interacts with hnRNPF to modulate pre-mRNA alternative splicing

    Get PDF
    FOXP3 promotes the development and function of regulatory T cells mainly through regulating the transcription of target genes. RNA alternative splicing has been implicated in a wide range of physiological and pathophysiological processes. We report here that FOXP3 associates with heterogeneous nuclear ribonucleoprotein (hnRNP) F through the exon 2-encoded region of FOXP3 and the second quasi-RNA recognition motif (qRRM) of hnRNPF. FOXP3 represses the ability of hnRNPF to bind to its target pre-mRNA and thus modulates RNA alternative splicing. Furthermore, overexpression of mouse hnRNPF in in vitro-differentiated regulatory T cells (Tregs) reduced their suppressive function. Thus, our studies identify a novel mechanism by which FOXP3 regulates mRNA alternative splicing to modulate the function of regulatory T cells

    Mouse Models of Allergic Diseases: TSLP and Its Functional Roles

    Get PDF
    ABSTRACTThe cytokine TSLP was originally identified in a murine thymic stromal cell line as a lymphoid growth factor. After the discovery of TSLP, extensive molecular genetic analyses and gene targeting experiments have demonstrated that TSLP plays an essential role in allergic diseases. In this review, we discuss the current status of TSLP and its functional role in allergic diseases particularly by focusing on effects of TSLP on haematopoietic cells in mouse models. It is our conclusion that a number of research areas, i.e., a new source of TSLP, effects of TSLP on non-haematopoietic and haematopoietic cells, synergistic interactions of cytokines including IL-25 and IL-33 and a regulation of TSLP expression and its function, are critically needed to understand the whole picture of TSLP involvement in allergic diseases. The mouse models will thus contribute further to our understanding of TSLP involvement in allergic diseases and development of therapeutic measures for human allergic diseases

    Assessment of Kinematics and Electromyography Following Arthroscopic Single-Tendon Rotator Cuff Repair

    Get PDF
    Background The increasing demand for rotator cuff (RC) repair patients to return to work as soon as they are physically able has led to exploration of when this is feasible. Current guidelines from our orthopedic surgery clinic recommend a return to work at 9 weeks postoperation. To more fully define capacity to return to work, the current study was conducted using a unique series of quantitative tools. To date, no study has combined 3-dimensional (3D) motion analysis with electromyography (EMG) assessment during activities of daily living (ADLs), including desk tasks, and commonly prescribed rehabilitation exercise. Objective To apply a quantitative, validated upper extremity model to assess the kinematics and muscle activity of the shoulder following repair of the supraspinatus RC tendon compared to that in healthy shoulders. Design A prospective, cross-sectional comparison study. Setting All participants were evaluated during a single session at the Medical College of Wisconsin Department of Orthopaedic Surgery\u27s Motion Analysis Laboratory. Participants Ten participants who were 9-12 weeks post–operative repair of a supraspinatus RC tendon tear and 10 participants with healthy shoulders (HS) were evaluated. Methods All participants were evaluated with 3D motion analysis using a validated upper extremity model and synchronized EMG. Data from the 2 groups were compared using multivariate Hotelling T2 tests with post hoc analyses based on Welch t-tests. Main Outcome Measurements Participants\u27 thoracic and thoracohumeral joint kinematics, temporal-spatial parameters, and RC muscle activity were measured by applying a quantitative upper extremity model during 10 activities of daily living and 3 rehabilitation exercises. These included tasks of hair combing, drinking, writing, computer mouse use, typing, calling, reaching to back pocket, pushing a door open, pulling a door closed, external rotation, internal rotation, and rowing. Results There were significant differences of the thoracohumeral joint motion in only a few of the tested tasks: comb maximal flexion angle (P = .004), pull door internal/external rotation range of motion (P = .020), reach abduction/adduction range of motion (P = .001), reach flexion/extension range of motion (P = .001), reach extension minimal angle (P = .025), active external rotation maximal angle (P = .012), and active external rotation minimal angle (P = .004). The thorax showed significantly different kinematics of maximal flexion angle during the call (P = .011), mouse (P = .007), and drink tasks (P = .005) between the 2 groups. The EMG data analysis showed significantly increased subscapularis activity in the RC repair group during active external rotation. Conclusions Although limited abduction was expected due to repair of the supraspinatus tendon, only a single ADL (reaching to back pocket) had a significantly reduced abduction range of motion. Thoracic motion was shown to be used as a compensatory strategy during seated ADLs. Less flexion of the thorax may create passive shoulder flexion at the thoracohumeral joint in efforts to avoid active flexion. The RC repair group participants were able to accomplish the ADLs within the same time frame and through thoracohumeral joint kinematics similar to those in the healthy shoulder group participants. In summary, this study presents a quantification of the effects of RC repair and rehabilitation on the ability to perform ADLs. It may also point to a need for increased rehabilitation focus on either regaining external rotation strength or range of motion following RC repair to enhance recovery and return to the workforce

    The parasite cytokine mimic <i>Hp</i>-TGM potently replicates the regulatory effects of TGF-β on murine CD4+ T cells

    Get PDF
    Transforming growth factor‐beta (TGF‐β) family proteins mediate many vital biological functions in growth, development and regulation of the immune system. TGF‐β itself controls immune homeostasis and inflammation, including conversion of naïve CD4+ T cells into Foxp3+ regulatory T cells (Tregs) in the presence of IL‐2 and T cell receptor ligands. The helminth parasite Heligmosomoides polygyrus exploits this pathway through a structurally novel TGF‐β mimic (Hp‐TGM), which binds to mammalian TGF‐β receptors and induces Tregs. Here, we performed detailed comparisons of Hp‐TGM with mammalian TGF‐β. Compared to TGF‐β, Hp‐TGM induced greater numbers of Foxp3+ Tregs (iTregs), with more intense Foxp3 expression. Both ligands upregulated Treg functional markers CD73, CD103 and PD‐L1, but Hp‐TGM induced significantly higher CD39 expression than did TGF‐β. Interestingly, in contrast to canonical TGF‐β signalling through Smad2/3, Hp‐TGM stimulation was slower and more sustained. Gene expression profiles induced by TGF‐β and Hp‐TGM were remarkably similar, and both types of iTregs suppressed T cell responses in vitro and EAE‐driven inflammation in vivo. In vitro, both types of iTregs were equally stable under inflammatory conditions, but Hp‐TGM‐induced iTregs were more stable in vivo during DSS‐induced colitis, with greater retention of Foxp3 expression and lower conversion to a ROR‐γt+ phenotype. Altogether, results from this study suggest that the parasite cytokine mimic, Hp‐TGM, may deliver a qualitatively different signal to CD4+ T cells with downstream consequences for the long‐term stability of iTregs. These data highlight the potential of Hp‐TGM as a new modulator of T cell responses in vitro and in vivo

    Fusion of green fluorescent protein to the C-terminus of granulysin alters its intracellular localization in comparison to the native molecule

    Get PDF
    The engineering of green fluorescent protein (GFP) fusion constructs in order to visibly tag a protein of interest has become a commonly used cell biology technique. Although caveats to this approach are obvious, literature reports in which the chimeric molecule behaves differently than the native molecule are scant. This brief report describes one such case. Granulysin, a small lytic and antimicrobial protein produced by cytotoxic lymphocytes, traffics to the regulated secretory system and is subsequently released from cells upon proper stimulus. In an attempt to elucidate mechanisms by which it accumulates in and is released from cytolytic granules, GFP was fused to the C-terminus of granulysin and expressed in an NK cell line. A control construct expressing the native protein was similarly expressed. The data demonstrate that, while the fusion protein is expressed and secreted, its subcellular localization is altered in comparison to native granulysin. Thus, the addition of GFP to the C-terminus of granulysin obscures the signal(s) that cytotoxic lymphocytes use to sort it to the regulated secretory pathway despite its normal biosynthesis and secretion. This example is offered as a cautionary account for other researchers who contemplate using this technology

    CD25+CD4+ Regulatory T Cells from the Peripheral Blood of Asymptomatic HIV-infected Individuals Regulate CD4+ and CD8+ HIV-specific T Cell Immune Responses In Vitro and Are Associated with Favorable Clinical Markers of Disease Status

    Get PDF
    Human immunodeficiency virus (HIV) disease is associated with loss of CD4+ T cells, chronic immune activation, and progressive immune dysfunction. HIV-specific responses, particularly those of CD4+ T cells, become impaired early after infection, before the loss of responses directed against other antigens; the basis for this diminution has not been elucidated fully. The potential role of CD25+CD4+ regulatory T cells (T reg cells), previously shown to inhibit immune responses directed against numerous pathogens, as suppressors of HIV-specific T cell responses was investigated. In the majority of healthy HIV-infected individuals, CD25+CD4+ T cells significantly suppressed cellular proliferation and cytokine production by CD4+ and CD8+ T cells in response to HIV antigens/peptides in vitro; these effects were cell contact dependent and IL-10 and TGF-β independent. Individuals with strong HIV-specific CD25+ T reg cell function in vitro had significantly lower levels of plasma viremia and higher CD4+: CD8+ T cell ratios than did those individuals in whom this activity could not be detected. These in vitro data suggest that CD25+CD4+ T reg cells may contribute to the diminution of HIV-specific T cell immune responses in vivo in the early stages of HIV disease

    Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells

    Get PDF
    Compelling evidence suggests that the epithelial cell–derived cytokine thymic stromal lymphopoietin (TSLP) may initiate asthma or atopic dermatitis through a dendritic cell–mediated T helper (Th)2 response. Here, we describe how TSLP might initiate and aggravate allergic inflammation in the absence of T lymphocytes and immunoglobulin E antibodies via the innate immune system. We show that TSLP, synergistically with interleukin 1 and tumor necrosis factor, stimulates the production of high levels of Th2 cytokines by human mast cells (MCs). We next report that TSLP is released by primary epithelial cells in response to certain microbial products, physical injury, or inflammatory cytokines. Direct epithelial cell–mediated, TSLP-dependent activation of MCs may play a central role in “intrinsic” forms of atopic diseases and explain the aggravating role of infection and scratching in these diseases
    corecore