756 research outputs found
Induction of PNAd and N-acetylglucosamine 6-O-sulfotransferases 1 and 2 in mouse collagen-induced arthritis
BACKGROUND: Leukocyte recruitment across blood vessels is fundamental to immune surveillance and inflammation. Lymphocyte homing to peripheral lymph nodes is mediated by the adhesion molecule, L-selectin, which binds to sulfated carbohydrate ligands on high endothelial venules (HEV). These glycoprotein ligands are collectively known as peripheral node addressin (PNAd), as defined by the function-blocking monoclonal antibody known as MECA-79. The sulfation of these ligands depends on the action of two HEV-expressed N-acetylglucosamine 6-O-sulfotransferases: GlcNAc6ST-2 and to a lesser degree GlcNAc6ST-1. Induction of PNAd has also been shown to occur in a number of human inflammatory diseases including rheumatoid arthritis (RA). RESULTS: In order to identify an animal model suitable for investigating the role of PNAd in chronic inflammation, we examined the expression of PNAd as well as GlcNAc6ST-1 and -2 in collagen-induced arthritis in mice. Here we show that PNAd is expressed in the vasculature of arthritic synovium in mice immunized with collagen but not in the normal synovium of control animals. This de novo expression of PNAd correlates strongly with induction of transcripts for both GlcNAc6ST-1 and GlcNAc6ST-2, as well as the expression of GlcNAc6ST-2 protein. CONCLUSION: Our results demonstrate that PNAd and the sulfotransferases GlcNAc6ST-1 and 2 are induced in mouse collagen-induced arthritis and suggest that PNAd antagonists or inhibitors of the enzymes may have therapeutic benefit in this widely-used mouse model of RA
Recommended from our members
A HEV-restricted sulfotransferase is expressed in rheumatoid arthritis synovium and is induced by lymphotoxin-alpha/beta and TNF-alpha in cultured endothelial cells.
BackgroundThe recruitment of lymphocytes to secondary lymphoid organs relies on interactions of circulating cells with high endothelial venules (HEV). HEV are exclusive to these organs under physiological conditions, but they can develop in chronically-inflamed tissues. The interaction of L-selectin on lymphocytes with sulfated glycoprotein ligands on HEV results in lymphocyte rolling, which represents the initial step in lymphocyte homing. HEV expression of GlcNAc6ST-2 (also known as HEC-GlcNAc6ST, GST-3, LSST or CHST4), an HEV-restricted sulfotransferase, is essential for the elaboration of L-selectin functional ligands as well as a critical epitope recognized by MECA-79 mAb.ResultsWe examined the expression of GlcNAc6ST-2 in relationship to the MECA-79 epitope in rheumatoid arthritis (RA) synovial vessels. Expression of GlcNAc6ST-2 was specific to RA synovial tissues as compared to osteoarthritis synovial tissues and localized to endothelial cells of HEV-like vessels and small flat-walled vessels. Double MECA-79 and GlcNAc6ST-2 staining showed colocalization of the MECA-79 epitope and GlcNAc6ST-2. We further found that both TNF-alpha and lymphotoxin-alphabeta induced GlcNAc6ST-2 mRNA and protein in cultured human umbilical vein endothelial cells.ConclusionThese observations demonstrate that GlcNAc6ST-2 is induced in RA vessels and provide potential cytokine pathways for its induction. GlcNAc6ST-2 is a novel marker of activated vessels within RA ectopic lymphoid aggregates. This enzyme represents a potential therapeutic target for RA
Age at developmental cortical injury differentially Alters corpus callosum volume in the rat
<p>Abstract</p> <p>Background</p> <p>Freezing lesions to developing rat cortex induced between postnatal day (P) one and three (P1 – 3) lead to malformations similar to human microgyria, and further correspond to reductions in brain weight and cortical volume. In contrast, comparable lesions on P5 do not produce microgyric malformations, nor the changes in brain weight seen with microgyria. However, injury occurring at all three ages does lead to rapid auditory processing deficits as measured in the juvenile period. Interestingly, these deficits persist into adulthood only in the P1 lesion case <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. Given prior evidence that early focal cortical lesions induce abnormalities in cortical morphology and connectivity <abbrgrp><abbr bid="B1">1</abbr><abbr bid="B2">2</abbr><abbr bid="B3">3</abbr><abbr bid="B4">4</abbr></abbrgrp>, we hypothesized that the differential behavioral effects of focal cortical lesions on P1, P3 or P5 may be associated with underlying neuroanatomical changes that are sensitive to timing of injury. Clinical studies indicate that humans with perinatal brain injury often show regional reductions in corpus callosum size and abnormal symmetry, which frequently correspond to learning impairments <abbrgrp><abbr bid="B5">5</abbr><abbr bid="B6">6</abbr><abbr bid="B7">7</abbr></abbrgrp>. Therefore, in the current study the brains of P1, 3 or 5 lesion rats, previously evaluated for brain weight, and cortical volume changes and auditory processing impairments (P21-90), were further analyzed for changes in corpus callosum volume.</p> <p>Results</p> <p>Results showed a significant main effect of Treatment on corpus callosum volume [F (1,57) = 10.2, P < .01], with lesion subjects showing significantly smaller callosal volumes as compared to shams. An Age at Treatment × Treatment interaction [F(2,57) = 3.2, P < .05], indicated that corpus callosum size decreased as the age of injury decreased from P5 to P1. Simple effects analysis showed significant differences between P1 and P3 [F(1,28) = 8.7, P < .01], and P1 and P5 [F(1,28) = 15.1, P < .001], subjects. Rats with P1 injury resulting in microgyria had the greatest reduction in corpus callosum volume (22% reduction), followed by the P3 group (11% reduction), which showed a significant reduction in corpus callosum volume compared to shams [F(1,31) = 5.9, P < .05]. Finally, the P5 lesion group did not significantly differ from the sham subjects in callosal volume.</p> <p>Conclusion</p> <p>Decrements in corpus callosum volume in the P1 and 3 lesion groups are consistent with the reductions in brain weight and cortical volume previously reported for microgyric rats <abbrgrp><abbr bid="B1">1</abbr><abbr bid="B8">8</abbr></abbrgrp>. Current results suggest that disruption to the cortical plate during early postnatal development may lead to more widely dispersed neurovolumetric anomalies and subsequent behavioral impairments <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>, compared with injury that occurs later in development. Further, these results suggest that in a human clinical setting decreased corpus callosum volume may represent an additional marker for long-term behavioral outcome.</p
Sulfation of a High Endothelial Venule–Expressed Ligand for L-Selectin: Effects on Tethering and Rolling of Lymphocytes
During lymphocyte homing, L-selectin mediates the tethering and rolling of lymphocytes on high endothelial venules (HEVs) in secondary lymphoid organs. The L-selectin ligands on HEV are a set of mucin-like glycoproteins, for which glycosylation-dependent cell adhesion molecule 1 (GlyCAM-1) is a candidate. Optimal binding in equilibrium measurements requires sulfation, sialylation, and fucosylation of ligands. Analysis of GlyCAM-1 has revealed two sulfation modifications (galactose [Gal]-6-sulfate and N-acetylglucosamine [GlcNAc]-6-sulfate) of sialyl Lewis x. Recently, three related sulfotransferases (keratan sulfate galactose-6-sulfotransferase [KSGal6ST], high endothelial cell N-acetylglucosamine-6-sulfotransferase [GlcNAc6ST], and human GlcNAc6ST) were cloned, which can generate Gal-6-sulfate and GlcNAc-6-sulfate in GlyCAM-1. Imparting these modifications to GlyCAM-1, together with appropriate fucosylation, yields enhanced rolling ligands for both peripheral blood lymphocytes and Jurkat cells in flow chamber assays as compared with those generated with exogenous fucosyltransferase. Either sulfation modification results in an increased number of tethered and rolling lymphocytes, a reduction in overall rolling velocity associated with more frequent pausing of the cells, and an enhanced resistance of rolling cells to detachment by shear. All of these effects are predicted to promote the overall efficiency of lymphocyte homing. In contrast, the rolling interactions of E-selectin transfectants with the same ligands are not affected by sulfation
Draft Genome Sequence of Burkholderia sp. MR1, a Methylarsenate-Reducing Bacterial Isolate from Florida Golf Course Soil
To elucidate the environmental organoarsenical biocycle, we isolated a soil organism, Burkholderia sp. MR1, which reduces relatively nontoxic pentavalent methylarsenate to the more toxic trivalent methylarsenite, with the goal of identifying the gene for the reductase. Here, we report the draft genome sequence of Burkholderia sp. MR1
Comparative Epigenomic Analysis of Murine and Human Adipogenesis
We report the generation and comparative analysis of genome-wide chromatin state maps, PPARÎł and CTCF localization maps, and gene expression profiles from murine and human models of adipogenesis. The data provide high-resolution views of chromatin remodeling during cellular differentiation and allow identification of thousands of putative preadipocyte- and adipocyte-specific cis-regulatory elements based on dynamic chromatin signatures. We find that the specific locations of most such elements differ between the two models, including at orthologous loci with similar expression patterns. Based on sequence analysis and reporter assays, we show that these differences are determined, in part, by evolutionary turnover of transcription factor motifs in the genome sequences and that this turnover may be facilitated by the presence of multiple distal regulatory elements at adipogenesis-dependent loci. We also utilize the close relationship between open chromatin marks and transcription factor motifs to identify and validate PLZF and SRF as regulators of adipogenesis.National Institutes of Health (U.S.) (DK63906)American Diabetes Association (Career Development Award)Pennington Biomedical Research FoundationNORC Center (Grant #1P30 DK072476
A HEV-restricted sulfotransferase is expressed in rheumatoid arthritis synovium and is induced by lymphotoxin-α/β and TNF-α in cultured endothelial cells
BACKGROUND: The recruitment of lymphocytes to secondary lymphoid organs relies on interactions of circulating cells with high endothelial venules (HEV). HEV are exclusive to these organs under physiological conditions, but they can develop in chronically-inflamed tissues. The interaction of L-selectin on lymphocytes with sulfated glycoprotein ligands on HEV results in lymphocyte rolling, which represents the initial step in lymphocyte homing. HEV expression of GlcNAc6ST-2 (also known as HEC-GlcNAc6ST, GST-3, LSST or CHST4), an HEV-restricted sulfotransferase, is essential for the elaboration of L-selectin functional ligands as well as a critical epitope recognized by MECA-79 mAb. RESULTS: We examined the expression of GlcNAc6ST-2 in relationship to the MECA-79 epitope in rheumatoid arthritis (RA) synovial vessels. Expression of GlcNAc6ST-2 was specific to RA synovial tissues as compared to osteoarthritis synovial tissues and localized to endothelial cells of HEV-like vessels and small flat-walled vessels. Double MECA-79 and GlcNAc6ST-2 staining showed colocalization of the MECA-79 epitope and GlcNAc6ST-2. We further found that both TNF-α and lymphotoxin-αβ induced GlcNAc6ST-2 mRNA and protein in cultured human umbilical vein endothelial cells. CONCLUSION: These observations demonstrate that GlcNAc6ST-2 is induced in RA vessels and provide potential cytokine pathways for its induction. GlcNAc6ST-2 is a novel marker of activated vessels within RA ectopic lymphoid aggregates. This enzyme represents a potential therapeutic target for RA
Report of the panel on earth rotation and reference frames, section 7
Objectives and requirements for Earth rotation and reference frame studies in the 1990s are discussed. The objectives are to observe and understand interactions of air and water with the rotational dynamics of the Earth, the effects of the Earth's crust and mantle on the dynamics and excitation of Earth rotation variations over time scales of hours to centuries, and the effects of the Earth's core on the rotational dynamics and the excitation of Earth rotation variations over time scales of a year or longer. Another objective is to establish, refine and maintain terrestrial and celestrial reference frames. Requirements include improvements in observations and analysis, improvements in celestial and terrestrial reference frames and reference frame connections, and improved observations of crustal motion and mass redistribution on the Earth
Recommended from our members
Motor recovery and cortical reorganization after constraint-induced movement therapy in stroke patients: a preliminary study.
Constraint-induced movement therapy (CIMT) is a physical rehabilitation regime that has been previously shown to improve motor function in chronic hemiparetic stroke patients. However, the neural mechanisms supporting rehabilitation-induced motor recovery are poorly understood. The goal of this study was to assess motor cortical reorganization after CIMT using functional magnetic resonance imaging (fMRI). In a repeated-measures design, 4 incompletely recovered chronic stroke patients treated with CIMT underwent motor function testing and fMRI. Five age-matched normal subjects were also imaged. A laterality index (LI) was determined from the fMRI data, reflecting the distribution of activation in motor cortices contralateral compared with ipsilateral to the moving hand. Pre-intervention fMRI showed a lower LI during affected hand movement of stroke patients (LI = 0.23+/-0.07) compared to controls (LI unaffected patient hand = 0.65+/-0.10; LI dominant normal hand = 0.65+/-0.11; LI nondominant normal hand = 0.69+/-0.11; P < 0.05) due to trends toward increased ipsilateral motor cortical activation. Motor function testing showed that patients made significant gains in functional use of the stroke-affected upper extremity (detected by the Motor Activity Log) and significant reductions in motor impairment (detected by the Fugl-Meyer Stroke Scale and the Wolf Motor Function Test) immediately after CIMT, and these effects persisted at 6-month follow-up. The behavioral effects of CIMT were associated with a trend toward a reduced LI from pre-intervention to immediately post-intervention (LI = -0.01+/-0.06, P = 0.077) and 6 months post-intervention (LI = -0.03+/-0.15). Stroke-affected hand movement was not accompanied by mirror movements during fMRI, and electromyographic measures of mirror recruitment under simulated fMRI conditions were not correlated with LI values. These data provide preliminary evidence that gains in motor function produced by CIMT in chronic stroke patients may be associated with a shift in laterality of motor cortical activation toward the undamaged hemisphere
- …