129 research outputs found

    Haplotypes at the Tas2r locus on distal chromosome 6 vary with quinine taste sensitivity in inbred mice

    Get PDF
    BACKGROUND: The detection of bitter-tasting compounds by the gustatory system is thought to alert animals to the presence of potentially toxic food. Some, if not all, bitter stimuli activate specific taste receptors, the T2Rs, which are expressed in subsets of taste receptor cells on the tongue and palate. However, there is evidence for both receptor-dependent and -independent transduction mechanisms for a number of bitter stimuli, including quinine hydrochloride (QHCl) and denatonium benzoate (DB). RESULTS: We used brief-access behavioral taste testing of BXD/Ty recombinant inbred (RI) mouse strains to map the major quantitative trait locus (QTL) for taste sensitivity to QHCl. This QTL is restricted to a ~5 Mb interval on chromosome 6 that includes 24 genes encoding T2Rs (Tas2rs). Tas2rs at this locus display in total 307 coding region single nucleotide polymorphisms (SNPs) between the two BXD/Ty RI parental strains, C57BL/6J (quinine-sensitive) and DBA/2J (quinine insensitive); approximately 50% of these mutations are silent. Individual RI lines contain exclusively either C57BL/6J or DBA/2J Tas2r alleles at this locus, and RI lines containing C57BL/6J Tas2r alleles are more sensitive to QHCl than are lines containing DBA/2J alleles. Thus, the entire Tas2r cluster comprises a large haplotype that correlates with quinine taster status. CONCLUSION: These studies, the first using a taste-salient assay to map the major QTL for quinine taste, indicate that a T2R-dependent transduction cascade is responsible for the majority of strain variance in quinine taste sensitivity. Furthermore, the large number of polymorphisms within coding exons of the Tas2r cluster, coupled with evidence that inbred strains exhibit largely similar bitter taste phenotypes, suggest that T2R receptors are quite tolerant to variation

    Heterogeneous Sensory Innervation and Extensive Intrabulbar Connections of Olfactory Necklace Glomeruli

    Get PDF
    The mammalian nose employs several olfactory subsystems to recognize and transduce diverse chemosensory stimuli. These subsystems differ in their anatomical position within the nasal cavity, their targets in the olfactory forebrain, and the transduction mechanisms they employ. Here we report that they can also differ in the strategies they use for stimulus coding. Necklace glomeruli are the sole main olfactory bulb (MOB) targets of an olfactory sensory neuron (OSN) subpopulation distinguished by its expression of the receptor guanylyl cyclase GC-D and the phosphodiesterase PDE2, and by its chemosensitivity to the natriuretic peptides uroguanylin and guanylin and the gas CO2. In stark contrast to the homogeneous sensory innervation of canonical MOB glomeruli from OSNs expressing the same odorant receptor (OR), we find that each necklace glomerulus of the mouse receives heterogeneous innervation from at least two distinct sensory neuron populations: one expressing GC-D and PDE2, the other expressing olfactory marker protein. In the main olfactory system it is thought that odor identity is encoded by a combinatorial strategy and represented in the MOB by a pattern of glomerular activation. This combinatorial coding scheme requires functionally homogeneous sensory inputs to individual glomeruli by OSNs expressing the same OR and displaying uniform stimulus selectivity; thus, activity in each glomerulus reflects the stimulation of a single OSN type. The heterogeneous sensory innervation of individual necklace glomeruli by multiple, functionally distinct, OSN subtypes precludes a similar combinatorial coding strategy in this olfactory subsystem

    Afferent activity to necklace glomeruli is dependent on external stimuli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The main olfactory epithelium (MOE) is a complex organ containing several functionally distinct subpopulations of sensory neurons. One such subpopulation is distinguished by its expression of the guanylyl cyclase GC-D. The axons of GC-D-expressing (GC-D+) neurons innervate 9–15 "necklace" glomeruli encircling the caudal main olfactory bulb (MOB). Chemosensory stimuli for GC-D+ neurons include two natriuretic peptides, uroguanylin and guanylin, and CO<sub>2</sub>. However, the biologically-relevant source of these chemostimuli is unclear: uroguanylin is both excreted in urine, a rich source of olfactory stimuli for rodents, and expressed in human nasal epithelium; CO<sub>2 </sub>is present in both inspired and expired air.</p> <p>Findings</p> <p>To determine whether the principal source of chemostimuli for GC-D+ neurons is external or internal to the nose, we assessed the consequences of removing external chemostimuli for afferent activity to the necklace glomeruli. To do so, we performed unilateral naris occlusions in <it>Gucy2d-Mapt-lacZ </it><sup>+/- </sup>mice [which express a β-galactosidase (β-gal) reporter specifically in GC-D+ neurons] followed by immunohistochemistry for β-gal and a glomerular marker of afferent activity, tyrosine hydroxylase (TH). We observed a dramatic decrease in TH immunostaining, consistent with reduced or absent afferent activity, in both necklace and non-necklace glomeruli ipsilateral to the occluded naris.</p> <p>Conclusion</p> <p>Like other MOB glomeruli, necklace glomeruli exhibit a large decrease in afferent activity upon removal of external stimuli. Thus, we conclude that activity in GC-D+ neurons, which specifically innervate necklace glomeruli, is not dependent on internal stimuli. Instead, GC-D+ neurons, like other OSNs in the MOE, primarily sense the external world.</p

    Inbred mouse strains C57BL/6J and DBA/2J vary in sensitivity to a subset of bitter stimuli

    Get PDF
    BACKGROUND: Common inbred mouse strains are genotypically diverse, but it is still poorly understood how this diversity relates to specific differences in behavior. To identify quantitative trait genes that influence taste behavior differences, it is critical to utilize assays that exclusively measure the contribution of orosensory cues. With a few exceptions, previous characterizations of behavioral taste sensitivity in inbred mouse strains have generally measured consumption, which can be confounded by post-ingestive effects. Here, we used a taste-salient brief-access procedure to measure taste sensitivity to eight stimuli characterized as bitter or aversive in C57BL/6J (B6) and DBA/2J (D2) mice. RESULTS: B6 mice were more sensitive than D2 mice to a subset of bitter stimuli, including quinine hydrochloride (QHCl), 6-n-propylthiouracil (PROP), and MgCl(2). D2 mice were more sensitive than B6 mice to the bitter stimulus raffinose undecaacetate (RUA). These strains did not differ in sensitivity to cycloheximide (CYX), denatonium benzoate (DB), KCl or HCl. CONCLUSION: B6-D2 taste sensitivity differences indicate that differences in consumption of QHCl, PROP, MgCl(2 )and RUA are based on immediate orosensory cues, not post-ingestive effects. The absence of a strain difference for CYX suggests that polymorphisms in a T2R-type taste receptor shown to be differentially sensitive to CYX in vitro are unlikely to differentially contribute to the CYX behavioral response in vivo. The results of these studies point to the utility of these common mouse strains and their associated resources for investigation into the genetic mechanisms of taste

    Mechanisms for Sweetness123

    Get PDF
    A remarkable amount of information has emerged in the past decade regarding sweet taste physiology. This article reviews these data, with a particular focus on the elucidation of the sweet taste receptor, its location and actions in taste transduction in the mouth, its nontaste functions in the gastrointestinal tract (e.g., in enteroendocrine cells), and the brain circuitry involved in the sensory processing of sweet taste. Complications in the use of rodents to model human sweet taste perception and responses are also considered. In addition, information relating to low-calorie sweeteners (LCS) is discussed in the context of these issues. Particular consideration is given to the known effects of LCS on enteroendocrine cell function

    Regulation of protein abundance in genetically diverse mouse populations.

    Get PDF
    Genetically diverse mouse populations are powerful tools for characterizing the regulation of the proteome and its relationship to whole-organism phenotypes. We used mass spectrometry to profile and quantify the abundance of 6,798 proteins in liver tissue from mice of both sexes across 58 Collaborative Cross (CC) inbred strains. We previously collected liver proteomics data from the related Diversity Outbred (DO) mice and their founder strains. We show concordance across the proteomics datasets despite being generated from separate experiments, allowing comparative analysis. We map protein abundance quantitative trait loci (pQTLs), identifying 1,087 local and 285 distal in the CC mice and 1,706 local and 414 distal in the DO mice. We find that regulatory effects on individual proteins are conserved across the mouse populations, in particular for local genetic variation and sex differences. In comparison, proteins that form complexes are often co-regulated, displaying varying genetic architectures, and overall show lower heritability and map fewer pQTLs. We have made this resource publicly available to enable quantitative analyses of the regulation of the proteome

    Multi-omics analysis identifies drivers of protein phosphorylation.

    Get PDF
    BACKGROUND: Phosphorylation of proteins is a key step in the regulation of many cellular processes including activation of enzymes and signaling cascades. The abundance of a phosphorylated peptide (phosphopeptide) is determined by the abundance of its parent protein and the proportion of target sites that are phosphorylated. RESULTS: We quantified phosphopeptides, proteins, and transcripts in heart, liver, and kidney tissue samples of mice from 58 strains of the Collaborative Cross strain panel. We mapped ~700 phosphorylation quantitative trait loci (phQTL) across the three tissues and applied genetic mediation analysis to identify causal drivers of phosphorylation. We identified kinases, phosphatases, cytokines, and other factors, including both known and potentially novel interactions between target proteins and genes that regulate site-specific phosphorylation. Our analysis highlights multiple targets of pyruvate dehydrogenase kinase 1 (PDK1), a regulator of mitochondrial function that shows reduced activity in the NZO/HILtJ mouse, a polygenic model of obesity and type 2 diabetes. CONCLUSIONS: Together, this integrative multi-omics analysis in genetically diverse CC strains provides a powerful tool to identify regulators of protein phosphorylation. The data generated in this study provides a resource for further exploration
    • …
    corecore