11 research outputs found
Modeling metallic island coalescence stress via adhesive contact between surfaces
Tensile stress generation associated with island coalescence is almost
universally observed in thin films that grow via the Volmer-Weber mode. The
commonly accepted mechanism for the origin of this tensile stress is a process
driven by the reduction in surface energy at the expense of the strain energy
associated with the deformation of coalescing islands during grain boundary
formation. In the present work, we have performed molecular statics
calculations using an embedded atom interatomic potential to obtain a
functional form of the interfacial energy vs distance between two closely
spaced free surfaces. The sum of interfacial energy plus strain energy provides
a measure of the total system energy as a function of island separation.
Depending on the initial separation between islands, we find that in cases
where coalescence is thermodynamically favored, gap closure can occur either
spontaneously or be kinetically limited due to an energetic barrier. Atomistic
simulations of island coalescence using conjugate gradient energy minimization
calculations agree well with the predicted stress as a function of island size
from our model of spontaneous coalescence. Molecular dynamics simulations of
island coalescence demonstrate that only modest barriers to coalescence can be
overcome at room temperature. A comparison with thermally activated coalescence
results at room temperature reveals that existing coalescence models
significantly overestimate the magnitude of the stress resulting from island
coalescence.Comment: 20 pages, 8 figures, 2 tables, submitted to PR
Upper limits on the strength of periodic gravitational waves from PSR J1939+2134
The first science run of the LIGO and GEO gravitational wave detectors
presented the opportunity to test methods of searching for gravitational waves
from known pulsars. Here we present new direct upper limits on the strength of
waves from the pulsar PSR J1939+2134 using two independent analysis methods,
one in the frequency domain using frequentist statistics and one in the time
domain using Bayesian inference. Both methods show that the strain amplitude at
Earth from this pulsar is less than a few times .Comment: 7 pages, 1 figure, to appear in the Proceedings of the 5th Edoardo
Amaldi Conference on Gravitational Waves, Tirrenia, Pisa, Italy, 6-11 July
200
Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers
We study frequency dependent (FD) input-output schemes for signal-recycling
interferometers, the baseline design of Advanced LIGO and the current
configuration of GEO 600. Complementary to a recent proposal by Harms et al. to
use FD input squeezing and ordinary homodyne detection, we explore a scheme
which uses ordinary squeezed vacuum, but FD readout. Both schemes, which are
sub-optimal among all possible input-output schemes, provide a global noise
suppression by the power squeeze factor, while being realizable by using
detuned Fabry-Perot cavities as input/output filters. At high frequencies, the
two schemes are shown to be equivalent, while at low frequencies our scheme
gives better performance than that of Harms et al., and is nearly fully
optimal. We then study the sensitivity improvement achievable by these schemes
in Advanced LIGO era (with 30-m filter cavities and current estimates of
filter-mirror losses and thermal noise), for neutron star binary inspirals, and
for narrowband GW sources such as low-mass X-ray binaries and known radio
pulsars. Optical losses are shown to be a major obstacle for the actual
implementation of these techniques in Advanced LIGO. On time scales of
third-generation interferometers, like EURO/LIGO-III (~2012), with
kilometer-scale filter cavities, a signal-recycling interferometer with the FD
readout scheme explored in this paper can have performances comparable to
existing proposals. [abridged]Comment: Figs. 9 and 12 corrected; Appendix added for narrowband data analysi
Detection and Interpretation of Impossible and Improbable Coma Recovery Scale-Revised Scores
Objective To determine the frequency with which specific Coma Recovery Scale-Revised (CRS-R) subscale scores co-occur as a means of providing clinicians and researchers with an empirical method of assessing CRS-R data quality. Design We retrospectively analyzed CRS-R subscale scores in hospital inpatients diagnosed with disorders of consciousness (DOCs) to identify impossible and improbable subscore combinations as a means of detecting inaccurate and unusual scores. Impossible subscore combinations were based on violations of CRS-R scoring guidelines. To determine improbable subscore combinations, we relied on the Mahalanobis distance, which detects outliers within a distribution of scores. Subscore pairs that were not observed at all in the database (ie, frequency of occurrence=0%) were also considered improbable. Setting Specialized DOC program and university hospital. Participants Patients diagnosed with DOCs (N=1190; coma: n=76, vegetative state: n=464, minimally conscious state: n=586, emerged from minimally conscious state: n=64; 794 men; mean age, 43±20y; traumatic etiology: n=747; time postinjury, 162±568d). Interventions Not applicable. Main Outcome Measure Impossible and improbable CRS-R subscore combinations. Results Of the 1190 CRS-R profiles analyzed, 4.7% were excluded because they met scoring criteria for impossible co-occurrence. Among the 1137 remaining profiles, 12.2% (41/336) of possible subscore combinations were classified as improbable. Conclusions Clinicians and researchers should take steps to ensure the accuracy of CRS-R scores. To minimize the risk of diagnostic error and erroneous research findings, we have identified 9 impossible and 36 improbable CRS-R subscore combinations. The presence of any one of these subscore combinations should trigger additional data quality review. © 2016 American Congress of Rehabilitation MedicineNIDILRR Grant 90DP0039-01-0
From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes: recent advances in our understanding of disorders of consciousness.
Functional neuroimaging and electrophysiology studies are changing our understanding of patients with coma and related states. Some severely brain damaged patients may show residual cortical processing in the absence of behavioural signs of consciousness. Given these new findings, the diagnostic errors and their potential effects on treatment as well as concerns regarding the negative associations intrinsic to the term vegetative state, the European Task Force on Disorders of Consciousness has recently proposed the more neutral and descriptive term unresponsive wakefulness syndrome. When vegetative/unresponsive patients show minimal signs of consciousness but are unable to reliably communicate the term minimally responsive or minimally conscious state (MCS) is used. MCS was recently subcategorized based on the complexity of patients' behaviours: MCS+ describes high-level behavioural responses (i.e., command following, intelligible verbalizations or non-functional communication) and MCS- describes low-level behavioural responses (i.e., visual pursuit, localization of noxious stimulation or contingent behaviour such as appropriate smiling or crying to emotional stimuli). Finally, patients who show non-behavioural evidence of consciousness or communication only measurable via para-clinical testing (i.e., functional MRI, positron emission tomography, EEG or evoked potentials) can be considered to be in a functional locked-in syndrome. An improved assessment of brain function in coma and related states is not only changing nosology and medical care but also offers a better-documented diagnosis and prognosis and helps to further identify the neural correlates of human consciousness
Disorders of consciousness after acquired brain injury: the state of the science
The concept of consciousness continues to defy definition and elude the grasp of philosophical and scientific efforts to formulate a testable construct that maps to human experience. Severe acquired brain injury results in the dissolution of consciousness, providing a natural model from which key insights about consciousness may be drawn. In the clinical setting, neurologists and neurorehabilitation specialists are called on to discern the level of consciousness in patients who are unable to communicate through word or gesture, and to project outcomes and recommend approaches to treatment. Standards of care are not available to guide clinical decision-making for this population, often leading to inconsistent, inaccurate and inappropriate care. In this Review, we describe the state of the science with regard to clinical management of patients with prolonged disorders of consciousness. We review consciousness-altering pathophysiological mechanisms, specific clinical syndromes, and novel diagnostic and prognostic applications of advanced neuroimaging and electrophysiological procedures. We conclude with a provocative discussion of bioethical and medicolegal issues that are unique to this population and have a profound impact on care, as well as raising questions of broad societal interest