2,160 research outputs found

    Enterohemorrhagic Escherichia coli colonization of human colonic epithelium in vitro and ex vivo

    Get PDF
    Enterohemorrhagic E. coli (EHEC) are important foodborne pathogens causing gastroenteritis and more severe complications such as hemorrhagic colitis and hemolytic uremic syndrome. Pathology is most pronounced in the colon, but to date there is no direct clinical evidence showing EHEC binding to colonic epithelium in patients. In this study, we investigated EHEC adherence to the human colon by using in vitro organ culture (IVOC) of colonic biopsies and polarized T84 colon carcinoma cells. We showed for the first time that EHEC colonized human colonic biopsies by forming typical attaching/effacing (A/E) lesions which were dependent on EHEC type III secretion (T3S) and binding of the outer membrane protein intimin to the Translocated intimin receptor (Tir). A/E lesion formation was dependent on oxygen levels and suppressed under oxygen-rich culture conditions routinely used for IVOC. In contrast, EHEC adherence to polarized T84 cells occurred independently of T3S and intimin and did not involve Tir translocation into the host cell membrane. Neither colonization of biopsies nor T84 cells was significantly affected by expression of Shiga toxins. Our study suggests that EHEC colonize and form stable A/E lesions on the human colon which is likely to contribute to intestinal pathology during infection. Furthermore, care needs to be taken when using cell culture models as they might not reflect the in vivo situation

    Shiga toxin production and translocation during microaerobic human colonic infection with Shiga toxin-producing E. coli O157:H7 and O104:H4

    Get PDF
    Haemolytic uraemic syndrome caused by Shiga toxin-producing E. coli (STEC) is dependent on release of Shiga toxins (Stxs) during intestinal infection and subsequent absorption into the bloodstream. An understanding of Stx-related events in the human gut is limited due to lack of suitable experimental models. In this study, we have used a vertical diffusion chamber system with polarized human colon carcinoma cells to simulate the microaerobic (MA) environment in the human intestine and investigate its influence on Stx release and translocation during STEC O157:H7 and O104:H4 infection. Stx2 was the major toxin type released during infection. Whereas microaerobiosis significantly reduced bacterial growth as well as Stx production and release into the medium, Stx translocation across the epithelial monolayer was enhanced under MA versus aerobic conditions. Increased Stx transport was dependent on STEC infection and occurred via a transcellular pathway other than macropinocytosis. While MA conditions had a similar general effect on Stx release and absorption during infection with STEC O157:H7 and O104:H4, both serotypes showed considerable differences in colonization, Stx production, and Stx translocation which suggest alternative virulence strategies. Taken together, our study suggests that the MA environment in the human colon may modulate Stx-related events and enhance Stx absorption during STEC infection

    Band alignment of epitaxial ZnS/Zn_(3)P_2 heterojunctions

    Get PDF
    The energy-band alignment of epitaxial zb-ZnS(001)/α-Zn_(3)P_(2)(001) heterojunctions has been determined by measurement of shifts in the phosphorus 2p and sulfur 2p core-level binding energies for various thicknesses (0.6–2.2 nm) of ZnS grown by molecular beam epitaxy on Zn_(3)P_(2). In addition, the position of the valence-band maximum for bulk ZnS and Zn3P2 films was estimated using density functional theory calculations of the valence-band density-of-states. The heterojunction was observed to be type I, with a valence-band offset, ΔE_V, of −1.19 ± 0.07 eV, which is significantly different from the type II alignment based on electron affinities that is predicted by Anderson theory. n^(+)-ZnS/p-Zn_(3)P_(2) heterojunctions demonstrated open-circuit voltages of >750 mV, indicating passivation of the Zn_(3)P_(2) surface due to the introduction of the ZnS overlayer. Carrier transport across the heterojunction devices was inhibited by the large conduction-band offset, which resulted in short-circuit current densities of <0.1 mA cm^(−2) under 1 Sun simulated illumination. Hence, constraints on the current density will likely limit the direct application of the ZnS/Zn_(3)P_(2) heterojunction to photovoltaics, whereas metal-insulator-semiconductor structures that utilize an intrinsic ZnS insulating layer appear promising

    Creatine Supplementation Improves Muscular Performance without Additional Impact on the Cardiovascular System in Trained Women

    Get PDF
    Creatine monohydrate supplementation in females is largely under-represented in the literature, and their potentially differential hemodynamic responses are unknown. Methods: Twenty-eight resistance-trained women (25.5 ± 6.1 years, 59.7 ± 6.3 kg, 163 ± 5 cm) were randomly assigned to the supplement creatine monohydrate (CRE; 5 g creatine monohydrate + 5 g dextrose) or placebo (PLA; 10 g dextrose) four times per day for 7 days in a double-blind fashion. Each subject subsequently completed resistance training sessions (3 × week) for four weeks with four sets to muscular failure of both half-squat and leg press exercises. The change in body mass (BM), exercise repetition number (REP), rated perceived exertion (RPE), and cardiovascular variables were assessed (sessions 1, 6, and 12). Statistical analyses were performed at a significance level of p ≤ 0.05. Results: Analyses revealed a significant CRE-specific BM increase (p = 0.013), as well as significantly greater half-squat (p = 0.006) and leg press (p = 0.017) REP per set versus PLA. Additionally, CRE demonstrated significantly lower relative RPE values at session 12 compared with previous sessions. Any significant main or interaction effects were observed for the studied cardiovascular variable. Conclusions: The present data substantiate the creatine’s efficacy to improve muscular performance in females while demonstrating the safety of combined creatine monohydrate supplementation and resistance training on cardiovascular parameters

    Influence of Stream Location in a Drainage Network on the Index of Biotic Integrity

    Full text link
    The index of biotic integrity (IBI) has become a widely used tool for assessing the condition of stream fish communities and the overall biological status of streams. Because the location of a stream in a drainage network can influence the species richness offish communities and because species richness is an important component of the IBI, we examined the influence of stream spatial location on the IBI. We found that IBI scores for headwater streams in three Illinois drainage basins were significantly lower than those calculated for tributary streams of similar size connecting directly to larger streams. This difference in IBI was related to the increased species richness and to a greater number of sucker and darter species in tributaries that drain into larger, main‐channel streams. Because of the influence of tributary location on the IBI, expected values for headwater tributary streams should be developed independently from those developed for main‐channel tributary streams. Failure to do so can result in a substantial underestimation of the IBI of headwater tributary streams or an overestimation of main‐channel tributaries.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142315/1/tafs0635.pd

    The technologies of isolation: apocalypse and self in Kurosawa Kiyoshi's Kairo

    Get PDF
    In this investigation of the Japanese film Kairo, I contemplate how the horrors present in the film relate to the issue of self, by examining a number of interlocking motifs. These include thematic foci on disease and technology which are more intimately and inwardly focused that the film's conclusion first appears to suggest. The true horror here, I argue, is ontological: centred on the self and its divorcing from the exterior world, especially founded in an increased use of and reliance on communicative technologies. I contend that these concerns are manifested in Kairo by presenting the spread of technology as disease-like, infecting the city and the individuals who are isolated and imprisoned by their urban environment. Finally, I investigate the meanings of the apocalypse, expounding how it may be read as hopeful for the future rather than indicative of failure or doom

    Regular Tart Cherry Intake Alters Abdominal Adiposity, Adipose Gene Transcription, and Inflammation in Obesity-Prone Rats Fed a High Fat Diet

    Full text link
    Abstract Obesity, systemic inflammation, and hyperlipidemia are among the components of metabolic syndrome, a spectrum of phenotypes that can precede the development of type 2 diabetes and cardiovascular disease. Animal studies show that intake of anthocyanin-rich extracts can affect these phenotypes. Anthocyanins can alter the activity of tissue peroxisome proliferator-activated receptors (PPARs), which affect energy substrate metabolism and inflammation. However, it is unknown if physiologically relevant, anthocyanin-containing whole foods confer similar effects to concentrated, anthocyanin extracts. The effect of anthocyanin-rich tart cherries was tested in the Zucker fatty rat model of obesity and metabolic syndrome. For 90 days, rats were pair-fed a higher fat diet supplemented with either 1% (wt/wt) freeze-dried, whole tart cherry powder or with a calorie- and macronutrient-matched control diet. Tart cherry intake was associated with reduced hyperlipidemia, percentage fat mass, abdominal fat (retroperitoneal) weight, retroperitoneal interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expression, and plasma IL-6 and TNF-α. Tart cherry diet also increased retroperitoneal fat PPAR-α and PPAR-γ mRNA (P=.12), decreased IL-6 and TNF-α mRNA, and decreased nuclear factor κB activity. In conclusion, in at-risk obese rats fed a high fat diet, physiologically relevant tart cherry consumption reduced several phenotypes of metabolic syndrome and reduced both systemic and local inflammation. Tart cherries may reduce the degree or trajectory of metabolic syndrome, thereby reducing risk for the development of type 2 diabetes and heart disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78120/1/jmf.2008.0270.pd

    Blueberry Intake Alters Skeletal Muscle and Adipose Tissue Peroxisome Proliferator-Activated Receptor Activity and Reduces Insulin Resistance in Obese Rats

    Full text link
    Metabolic syndrome can precede the development of type 2 diabetes and cardiovascular disease and includes phenotypes such as obesity, systemic inflammation, insulin resistance, and hyperlipidemia. A recent epidemiological study indicated that blueberry intake reduced cardiovascular mortality in humans, but the possible genetic mechanisms of this effect are unknown. Blueberries are a rich source of anthocyanins, and anthocyanins can alter the activity of peroxisome proliferator-activated receptors (PPARs), which affect energy substrate metabolism. The effect of blueberry intake was assessed in obesity-prone rats. Zucker Fatty and Zucker Lean rats were fed a higher-fat diet (45% of kcal) or a lower-fat diet (10% of kcal) containing 2% (wt/wt) freeze-dried whole highbush blueberry powder or added sugars to match macronutrient and calorie content. In Zucker Fatty rats fed a high-fat diet, the addition of blueberry reduced triglycerides, fasting insulin, homeostasis model index of insulin resistance, and glucose area under the curve. Blueberry intake also reduced abdominal fat mass, increased adipose and skeletal muscle PPAR activity, and affected PPAR transcripts involved in fat oxidation and glucose uptake/oxidation. In Zucker Fatty rats fed a low-fat diet, the addition of blueberry also significantly reduced liver weight, body weight, and total fat mass. Finally, Zucker Lean rats fed blueberry had higher body weight and reduced triglycerides, but all other measures were unaffected. In conclusion, whole blueberry intake reduced phenotypes of metabolic syndrome in obesity-prone rats and affected PPAR gene transcripts in adipose and muscle tissue involved in fat and glucose metabolism.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90448/1/jmf-2E2010-2E0292.pd
    corecore