3,071 research outputs found

    Spreading speeds for plant populations in landscapes with low environmental variation

    Get PDF
    Characterising the spread of biological populations is crucial in responding to both biological invasions and the shifting of habitat under climate change. Spreading speeds can be studied through mathematical models such as the discrete-time integro-difference equation (IDE) framework. The usual approach in implementing IDE models has been to ignore spatial variation in the demographic and dispersal parameters and to assume that these are spatially homogeneous. On the other hand, real landscapes are rarely spatially uniform with environmental variation being very important in determining biological spread. This raises the question of under what circumstances spatial structure need not be modelled explicitly. Recent work has shown that spatial variation can be ignored for the specific case where the scale of landscape variation is much smaller than the spreading populationŚłs dispersal scale. We consider more general types of landscape, where the spatial scales of environmental variation are arbitrarily large, but the maximum change in environmental parameters is relatively small. We find that the difference between the wave-speeds of populations spreading in a spatially structured periodic landscape and its homogenisation is, in general, proportional to Ï”2, where Ï” governs the degree of environmental variation. For stochastically generated landscapes we numerically demonstrate that the error decays faster than Ï”. In both cases, this means that for sufficiently small Ï”, the homogeneous approximation is better than might be expected. Hence, in many situations, the precise details of the landscape can be ignored in favour of spatially homogeneous parameters. This means that field ecologists can use the homogeneous IDE as a relatively simple modelling tool – in terms of both measuring parameter values and doing the modelling itself. However, as Ï” increases, this homogeneous approximation loses its accuracy. The change in wave-speed due to the extrinsic (landscape) variation can be positive or negative, which is in contrast to the reduction in wave-speed caused by intrinsic stochasticity. To deal with the loss of accuracy as Ï” increases, we formulate a second-order approximation to the wave-speed for periodic landscapes and compare both approximations against the results of numerical simulation and show that they are both accurate for the range of landscapes considered

    Ab-initio modelling of defects in MgO

    Get PDF
    The energetics of the key defects that are observed to occur during simulations of radiation damage in MgO are analysed using density functional theory. The results are compared with those from the empirical potentials used to carry out the radiation damage studies. The formation energies of vacancies, interstitials, Frenkel pairs, di-vacancies and di-interstitials are calculated as a function of the increasing supercell size in order to ensure good convergence. The supercell geometries were chosen to maximise the separation distance between periodic images. Their sizes ranged from cells containing 32 atoms up to cells containing 180 atoms. Results are presented for the formation energies of the first, second and third nearest neighbour defects. Results show that the di-vacancy formation energy is in the region of 4–6 eV and that formation energies for di-interstitials are more than double this, lying in the range 12–16 eV. Comparison of the results show that empirical potentials overestimate the formation energy of di-vacancies by 1–3 eV and underestimate the formation energies of di-interstitials by about 1–2 eV. The relative stability of the defects is, however, correctly predicted by the empirical potentials. The direction and the magnitude of the displacements of the atoms surrounding the defects are in good agreement for all the systems containing interstitials. For the systems containing vacancies the direction of the displacements are in agreement but the empirical potentials predict larger displacements in all cases

    Speeding up the simulation of population spread models

    Get PDF
    1. Simulating spatially explicit population models to predict population spread allows environmental managers to make better-informed decisions. Accurate simulation requires high spatial resolution, which, using existing techniques, can require prohibitively large amounts of computational resources (RAM, CPU, etc). 2. We developed and implemented a novel algorithm for the simulation of integro-difference equations (IDEs) modelling population spread, including stage structure, which uses adaptive mesh refinement. 3. We measured the accuracy of the adaptive algorithm by comparing the results of simulations using the adaptive and a standard non-adaptive algorithm. The relative error of the population's spatial extent was low (<0·05) for a range of parameter values. Comparing efficiency, we found that our algorithm used up to 10 times less CPU time and RAM than the non-adaptive algorithm. 4. Our approach provides large improvements in efficiency without significant loss of accuracy, so it enables faster simulation of IDEs and simulation at scales and at resolutions that have not been previously feasible. As an example, we simulate the spread of a hypothetical species over the UK at a resolution of 25 m. We provide our implementation of the algorithm as a user-friendly executable application

    Effects of Hypovolemia on Cerebral Blood Velocity and Autoregulation During Upright Tilt: Implications for Post-Spaceflight Orthostasis

    Get PDF
    Orthostatic stability depends on maintenance of adequate cerebral blood flow. Orthostatic instability experienced by returning astronauts is associated with microgravity-induced hypovolemia, suggesting that hypovolemia may disrupt the ability of the cerebral vasculature to regulate blood flow. PURPOSE: To test the hypothesis that hypovolemia reduces cerebral blood velocity and impairs cerebral autoregulation (CA) during upright tilt. METHODS: Nine males (age 23 ± .5 yrs; height 172 ± 2 cm; weight 87 ± 3 kg; mean ± SE) were tilted head-up to 70° on two occasions separated by at least 5 days under euhydration (EUH) and dehydration (DEH) conditions. Dehydration was induced with 40 mg Furosemide and 8 h water restriction. Plasma volumes (PV) and blood volumes (BV) were estimated from venous hemoglobin and hematocrit. ECG, beat-by-beat finger arterial pressures, and cerebral blood velocity (CBV) were measured during a five min supine baseline, and during the first (T1) and last (T2) five min of upright tilt. Dynamic CA was assessed in the frequency domain with cross-spectral analysis of mean arterial pressure (MAP) and mean CBV within the frequency range of 0.07-0.2 Hz. RESULTS: Furosemide reduced PV by 10 ± 2 % and BV by 6 ± 2 % (P = .005 and P = .07). MAP decreased during tilt (P \u3c .007), but the reduction was similar between hydration conditions. CBV during DEH was lower during the entire 10-min tilt by about 7 cm/s (P \u3c .004) compared with EUH. Low frequency coherence was higher during DEH T1 compared with EUH T1 (.67 ± .04 vs .51 ± .04; P = .02), but coherence decreased as tilt continued, and was similar to EUH during T2 (P = 0.7). CONCLUSIONS: Increased coherence during the first 5 min of tilt suggests that reductions of CBV with hypovolemia might be explained by a reduced autoregulatory capacity. However, maintenance of lower CBV despite reduced coherence during the second 5 min of tilt suggests that disruptions of autoregulatory capacity with hypovolemia are transient. Our results provide evidence that hypovolemic astronauts may be at greatest risk for orthostatic intolerance immediately upon assumption of upright posture

    Cerebrovascular Hemodynamics during Concentric and Eccentric Phases of Heavy Resistance Exercise

    Get PDF
    Rapid and drastic fluctuations in arterial blood pressures, such as those occurring during heavy resistance exercise pose a unique challenge to the maintenance of cerebral perfusion. During high-intensity leg cycling, regulation of cerebral perfusion is reduced by rapid decreases in beat-to-beat fluctuations in blood pressure (diastolic phase) rather than rapid increases (systolic phase). The purpose of this study was to test the hypothesis that rhythmic heavy resistance exercise will similarly impair the regulation of cerebral blood flow during the diastolic phase of beat-to-beat fluctuations in pressure. We studied seven healthy male subjects. Beat-to-beat finger arterial pressures, and middle cerebral artery blood velocity (MCAv) were measured during 10 repetitions (REP) of rhythmic high intensity leg press exercise. Velocities and arterial pressures were evaluated during both the isotonic concentric and eccentric phases of each REP. The Gosling pulsatility index (PI) of MCAv of each REP was calculated as MCAv systolic-MCAv diastolic/MCAv mean. During the concentric phase, systolic arterial pressures progressively increased from REP 1 through REP 10 (P \u3c 0.001), while systolic MCAv was not different across all REPs (P \u3e0.2). Diastolic arterial pressures during the eccentric phase also increased from REP 1 through REP 10 (P = 0.03) however diastolic MCAv decreased during REPs 7-10 compared with REP 2 (P ≀ 0.02). MCAv PI also increased during REP 7-10 compared to REP 2 (P ≀ 0.02). Similar to high-intensity leg cycling, our data suggest that during rhythmic high-intensity leg press exercise, cerebral perfusion is well controlled during periods of rapid increases in blood pressure, but regulation of cerebral perfusion is impaired during the diastolic phase of beat-to-beat fluctuations in pressure

    Complementary Patents and Market Structure

    Get PDF
    Many high technology goods are based on standards that require several essential patents owned by different IP holders. This gives rise to a complements and a double mark-up problem. We compare the welfare effects of two different business strategies dealing with these problems. Vertical integration of an IP holder and a downstream producer solves the double mark-up problem between these firms. Nevertheless, it may raise royalty rates and reduce output as compared to non-integration. Horizontal integration of IP holders solves the complements problem but not the double mark-up problem. Vertical integration discourages entry and reduces innovation incentives, while horizontal integration always benefits from entry and innovatio

    Ab initio study of point defects in magnesium oxide

    Get PDF
    Energetics of a variety of point defects in MgO have been considered from an ab initio perspective using density functional theory. The considered defects are isolated Schottky and Frenkel defects and interstitial pairs, along with a number of Schottky defects and di-interstitials. Comparisons were made between the density functional theory results and results obtained from empirical potential simulations and these generally showed good agreement. Both methodologies predicted the first nearest neighbor Schottky defects to be the most energetically favorable of the considered Schottky defects and that the first, second, and fifth nearest neighbor di-interstitials were of similar energy and were favored over the other di-interstitial configurations. Relaxed structures of the defects were analyzed, which showed that empirical potential simulations were accurately predicting the displacements of atoms surrounding di-interstitials, but were overestimating O atom displacement for Schottky defects. Transition barriers were computed for the defects using the nudged elastic band method. Vacancies and Schottky defects were found to have relatively high energy barriers, the majority of which were over 2 eV, in agreement with conclusions reached using empirical potentials. The lowest barriers for di-interstitial transitions were found to be for migration into a first nearest neighbor configuration. Charges were calculated using a Bader analysis and this found negligible charge transfer during the defect transitions and only small changes in the charges on atoms surrounding defects, indicating why fixed charge models work as well as they do

    The Metal-Poor Halo of the Andromeda Spiral Galaxy (M31)

    Get PDF
    We present spectroscopic observations of red giant branch (RGB) stars over a large expanse in the halo of the Andromeda spiral galaxy (M31), acquired with the DEIMOS instrument on the Keck II 10-m telescope. Using a combination of five photometric/spectroscopic diagnostics -- (1) radial velocity, (2) intermediate-width DDO51 photometry, (3) Na I equivalent width (surface gravity sensitive), (4) position in the color-magnitude diagram, and (5) comparison between photometric and spectroscopic [Fe/H] estimates -- we isolate over 250 bona fide M31 bulge and halo RGB stars located in twelve fields ranging from R = 12-165kpc from the center of M31 (47 of these stars are halo members with R > 60 kpc). We derive the photometric and spectroscopic metallicity distribution function of M31 RGB stars in each of these fields. The mean of the resulting M31 spheroid (bulge and halo) metallicity distribution is found to be systematically more metal-poor with increasing radius, shifting from = -0.47+/-0.03 (sigma = 0.39) at R = -0.94+/-0.06 (sigma = 0.60) at R ~ 30 kpc to = -1.26+/-0.10 (sigma = 0.72) at R > 60 kpc, assuming [alpha/Fe] = 0.0. These results indicate the presence of a metal-poor RGB population at large radial distances out to at least R = 160 kpc, thereby supporting our recent discovery of a stellar halo in M31: its halo and bulge (defined as the structural components with R^{-2} power law and de Vaucouleurs R^{1/4} law surface brightness profiles, respectively) are shown to have distinct metallicity distributions. If we assume an alpha-enhancement of [alpha/Fe] = +0.3 for M31's halo, we derive = -1.5+/-0.1 (sigma = 0.7). Therefore, the mean metallicity and metallicity spread of this newly found remote M31 RGB population are similar to those of the Milky Way halo.Comment: Accepted for publication in ApJ on May 4th, 2006 (submitted on Jan 30, 2006). 16 pages, 13 figures, 3 table

    Kinematics and Metallicity of M31 Red Giants: The Giant Southern Stream and Discovery of a Second Cold Component at R = 20 kpc

    Full text link
    We present spectroscopic observations of red giant branch (RGB) stars in the Andromeda spiral galaxy (M31), acquired with the DEIMOS instrument on the Keck II 10-m telescope. The three fields targeted in this study are in the M31 spheroid, outer disk, and giant southern stream. In this paper, we focus on the kinematics and chemical composition of RGB stars in the stream field located at a projected distance of R = 20 kpc from M31's center. A mix of stellar populations is found in this field. M31 RGB stars are isolated from Milky Way dwarf star contaminants using a variety of spectral and photometric diagnostics. The radial velocity distribution of RGB stars displays a clear bimodality -- a primary peak centered at v = -513 km/s and a secondary one at v = -417 km/s -- along with an underlying broad component that is presumably representative of the smooth spheroid of M31. Both peaks are found to be dynamically cold with intrinsic velocity dispersions of sigma(v) = 16 km/s. The mean metallicity and metallicity dispersion of stars in the two peaks is also found to be similar: [Fe/H] = -0.45 and sigma([Fe/H]) = 0.2. The observed velocity of the primary peak is consistent with that predicted by dynamical models for the stream, but there is no obvious explanation for the secondary peak. The nature of the secondary cold population is unclear: it may represent: (1) tidal debris from a satellite merger event that is superimposed on, but unrelated to, the giant southern stream; (2) a wrapped around component of the giant southern stream; (3) a warp or overdensity in M31's disk at R > 50 kpc (this component is well above the outward extrapolation of the smooth exponential disk brightness profile).Comment: 32 pages, 13 figures, 1 table. Accepted for publication in Ap
    • 

    corecore