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Abstract

Characterising the spread of biological populations is crucial in responding to both biological invasions and

the shifting of habitat under climate change. Spreading speeds can be studied through mathematical models

such as the discrete-time integro-difference equation (IDE) framework. The usual approach in implementing

IDE models has been to ignore spatial variation in the demographic and dispersal parameters and to assume

that these are spatially homogeneous. On the other hand, real landscapes are rarely spatially uniform with

environmental variation being very important in determining biological spread. This raises the question of

under what circumstances spatial structure need not be modelled explicitly. Recent work has shown that

spatial variation can be ignored in models in the specific case where the scale of landscape variation is much

smaller than the spreading population’s dispersal scale. We consider more general types of landscape, where

the spatial scales of environmental variation are arbitrarily large, but the maximum change in environmental

parameters is relatively small. We find that the difference between the wave-speeds of populations spreading

in a spatially structured periodic landscape and its homogenisation is, in general, proportional to ε2, where

ε governs the degree of environmental variation. For stochastically generated landscapes we numerically

demonstrate that the error decays faster than ε. In both cases, this means that for sufficiently small ε,

the homogeneous approximation is better than might be expected. Hence, in many situations, the precise

details of the landscape can be ignored in favour of spatially homogeneous parameters. This means that field

ecologists can use the homogeneous IDE as a relatively simple modelling tool - in terms of both measuring

parameter values and doing the modelling itself. However, as ε increases, this homogeneous approximation

loses its accuracy. The change in wave-speed due to the extrinisic (landscape) variation can be positive or

negative, which is in contrast to the reduction in wave-speed caused by intrinsic stochasticity. To deal with

the loss of accuracy as ε increases, we formulate a second order approximation to the wave-speed for periodic

landscapes and compare both approximations against the results of numerical simulation and show that they

are both accurate for the range of landscapes considered.

∗Corresponding author.
Email addresses: gilbert@maths.ox.ac.uk (Mark A. Gilbert), smwhit@ceh.ac.uk (Steven M. White), jmbul@ceh.ac.uk

(James M. Bullock), gaffney@maths.ox.ac.uk (Eamonn A. Gaffney)

Preprint submitted to Elsevier April 8, 2014



1. Introduction

Understanding the changing spatial distributions of plant populations is of utmost importance to ecol-

ogists, environmental managers, conservationists [1] and agronomists [2]. This is due to both the sizeable

environmental and economic impacts of biological invasions [2, 3, 4, 5] and the need for species to keep pace

with shifting habitat if they are to survive the effects of climate change [6, 7, 8]. Developing the understand-

ing of spatial spread through mathematical modelling should enhance our ability to manage invasive species

and the ecological effects of climate change (e.g. [9]).

Extrinisic (landscape) and intrinsic (individual) variation have both been found to be important factors

in determining whether a population spreads and its spread rate. Lewis et al [10] found that the effect

of intrinisic variation is to reduce a population’s spreading ability and speed. In contrast, while landscape

structure is a decisive factor in determining a population’s spreading ability and speed [7, 11], the precise way

it affects spread is more complicated. Mathematical models of population spread have addressed landscape

structure in two ways (e.g. [12, 13]). At one extreme, models have been developed to represent fragmented

landscapes [14] while at the other, many researchers have treated landscapes as homogeneous [15, 16, 17, 18].

One might expect that neglecting to incorporate the landscape structure explicitly would result in inaccurate

predictions of spread, however homogeneous approximations have been relatively successful when compared

with real data, for example [19, 20]. Here, we will address the question of under what circumstances the details

of landscape structure can be ignored, and when they must be taken into account if accurate predictions are

to be made.

We use an Integrodifference Equation (IDE) framework [21] to model spreading populations. IDEs treat

population growth and dispersal as separate sequential phases in an (e.g. annual) cycle and have been widely

used to study population spread, especially in plants [19, 8, 22, 23, 24]. IDEs can incorporate stage-structured

matrix population models [18] and any dispersal pattern that can be formulated as a dispersal kernel, the

distribution of displacements of individuals from their original position, or (for juveniles) the position of

their parent. Landscape heterogeneity can be introduced to the model in terms of spatially heterogeneous

parameters in the dispersal kernel or the population projection matrix.

The general stage-structured, spatially heterogeneous IDE [18] in one spatial dimension relates the con-

tinuous population distribution at time t + 1 with the vector valued stage-structured distribution ut(x) at

time t and location x ∈ R, via

ut+1(x) =

∫ ∞
−∞

[
K(x− y, y) ◦B

(
ut(y), y

)]
ut(y)dy , (1)

where ◦ denotes the Hadamard (elementwise) product of two matrices [18]. This relation is non-dimensional
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in that we do not give scales or units to length, population density or time, with the analysis applicable

to all choices of length and time scales. In the integrand B (ut(y), y) is the population projection matrix,

with its (i, j)-th entry being the ratio of the number of individuals in stage j after the growth phase and

the number individuals in stage i at time t (at location y). K(x − y, y) is the matrix of dispersal kernels

Ki,j(x− y, y) for individuals which transitioned from stage i to stage j in the growth phase. It is necessary

to consider the dispersal pattern of individuals transitioning between each (permitted) pair of demographic

stages separately, as the stage of the individual or, in the case of juveniles, its parent before the growth phase

will often affect the individual’s dispersal behaviour. For example, for plants with wind dispersed seeds,

the mean dispersal distance of a seed/new juvenile will depend on the seed release height of its parent and

therefore on its parent’s demographic stage (e.g. [25]).

The long-term behaviour and spreading speeds of solutions to (1) can be studied through numerical

simulation. However, analytical expressions for the persistence and spreading speed are very useful in un-

derstanding parameter dependencies. Additionally, their calculation is much less computationally expensive

than numerical simulation, so allowing extensive parameter sweeps when calculating the effects of different

factors on the speed at which the population propagates, the wave-speed.

For spatially homogeneous IDEs with no Allee effect we can find a simple expression for the wave-speed as

long as this wave-speed is linearly determined and constant (rather than accelerating). These are guaranteed

by the conditions that:

I. The demographic matrix B is either positive, or nonnegative and primitive.

II. Each element of the matrix of kernels Ki,j(z, y) have moment generating functions in z, i.e. the

dispersal kernel from each point y between each pair of demographic stages is exponentially bounded.

This condition ensures that solutions have a constant wave-speed and do not accelerate [17].

III. The constant zero population state is globally unstable, i.e. any initial arbitrarily small population,

located anywhere, will invade and tend towards the non-zero equilibrium of the habitat as t→∞.

IV. Increased population density reduces the effect of the demographic matrix on any population distribu-

tion, i.e.

B (0, y)u ≥ B (u, y)u for all u ∈ RM

where the inequality is evaluated elementwise and M is the number of demographic stages.

We will assume these standard [18] conditions for the analysis in the remainder of the paper. Where the

growth and dispersal parameters are independent of spatial location and the above conditions are satisfied,

the wave-speed is given by
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ĉ = min
s>0

(
1

s
log (ρ(s))

)
(2)

where ρ(s) is the principal (largest in absolute value) eigenvalue of the operator

H(s) =

∫ ∞
−∞

[K(z) ◦A] eszdz . (3)

For spatially heterogeneous IDEs, no equivalent expression exists. This has led to the development of

several analytical approximations for the wave-speed in different scenarios and asymptotic limits. Due to

their relative tractability, these analyses have focused on periodic landscapes of alternate (‘good’ and ‘bad’)

patches with different values for the growth and dispersal parameters. Kawasaki and Shigesada (2007)

developed approximations for cases when dispersal is given by the Laplace (exponential) kernel [26]. Other

researchers have developed approximations applicable to any exponentially bounded kernel, but where certain

parameters in the model must be related to each other by a small parameter ε� 1 (with smaller ε giving a

greater degree of accuracy). Dewhirst and Lutscher (2009) [13] considered landscapes where the period of the

landscape is much smaller than the scale of dispersal. They used averaging techniques, replacing the spatially

heterogeneous parameters with their spatial homogenisation (average) and using the results for homogeneous

landscapes. Gilbert et al (2014) [14] found approximations for periodic landscapes in which the spatial scale

of the good patches is much smaller than the scale of dispersal and the demographic rates in the good patches

are much greater than those in the bad patches.

The existing approximations give accurate results (when compared with numerical simulation) for spread-

ing speeds of populations with a particular dispersal kernel or in the relevant asymptotic limit. In contrast

to previous studies, in this paper we will derive results for landscapes with low environmental variation, in

which the environmentally driven variation in demographic parameters relative to the mean, ε, is small (i.e.

ε � 1). For example, fecundity may be slightly higher than the mean in some locations and slightly lower

in others. Low environmental variation in population measures and environmental conditions within land-

scapes has been documented by several authors [27, 28]. For example, Janǐsová et al (2012) [29] measured

the demographic matrices of the endangered flowering plant Tephroseris longifolia across five locations in a

grassland/scrub landscape in the Czech Republic and Slovakia and found their principal eigenvalues to vary

between 1.25 and 2.04 (a maximum relative variation of 0.31 from the mean). Generally, one might expect

a population to encounter low environmental variation when spreading across a single continuous habitat,

such as prairie, boreal forest, or regions converted to arable agriculture.

We show that when the environmental variation coefficient ε is small, the asymptotic wave-speeds ĉ(ε)

and ĉ(0) corresponding to the heterogeneous landscape and its homogenisation differ by an additive factor

of size ε2, providing a justification for studying the homogenisations of landscapes with low environmental
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variation. We will also derive a second order approximation for the wave-speed in these weakly heteroge-

neous landscapes which will act as a better approximation for larger ε. Using numerical simulation, we

will show that both the homogeneous and second order approximations are accurate for ε < 0.3, with the

second order approximation dramatically reducing the error. We will also explore the relationship between

ε and the wave-speed in a non-periodic (stochastically generated) landscape, and will find a similar lack of

sensitivity to ε for sufficiently small values of ε. For both periodic and stochastically generated landscapes,

we find that extrinsic environmental variation can both speed up and slow down invasions, with the specific

effect having complex dependencies on the difference between landscape variation and dispersal scales, the

mean demographic/dispersal rates and on the dispersal kernel. This is in contrast to the effects of intrinsic

stochasticity studied by Lewis et al [10] which were found to always slow down spread. How small ε needs

to be in practice for the homogeneous approximation to work will depend on the average parameters of the

organism and the landscape itself and will therefore be explored.

2. Method

In this section, we will show that, for periodic landscapes, the error of the homogeneous approximation

is proportional to ε2 and therefore that the homogeneous approximation is accurate for sufficiently small ε

(§2.1). We will then derive a second order approximation, which incorporates the second non-zero term in

the eigenvalue of the dispersion relation (§2.2), and finally, will discuss the extension of the periodic results

in §2.1-2 to non-periodic landscapes (§2.3).

2.1. Accuracy of the Homogeneous Approximation

We consider the wave-speed solutions of equations of the form (1) where the initial conditions u0(x) are

non-zero only on some closed interval [xmin, xmax] where xmin, xmax are finite (mathematically, they have

compact support). The landscape parameters are periodic and weakly heterogeneous, i.e. each dispersal and

growth parameter exhibits only O(ε) proportional variation from its spatial mean, where ε� 1 (see Condition

V).

To demonstrate analytically that there is only an O(ε2) difference in asymptotic wave-speed between

solutions of this model and solutions of the spatially averaged homogeneous model (where the growth and

dispersal parameters are constant and given by the spatial averages of the parameters used in (1)) we require

that the IDE satisfies both the standard conditions stated in the Introduction and the following additional

conditions:

V. The dispersal kernel K(z, x) is determined by a number of spatially varying parameters αj(x). These

parameters, together with the elements Ai,j(x) of the intrinsic population projection matrix A(x) =

B(0, x), are small bounded perturbations from their spatial mean, i.e.
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αi(x) = αi0(1 + εqi1(x)) and Aj,k(x) = Aj,k0 (1 + εQj,k1 (x)),

where Aj,k0 and αi0 are the spatial averages of the demographic and dispersal parameters. The relative

heterogeneity coefficient ε satisfies ε � 1 and the relative perturbations qj1(x), Qi,j1 (x) are O(1) and

satisfy

∫ L

0

qi1(x)dx = 0 ,

∫ L

0

Qj,k1 (x)dx = 0 ,

where L is the period of the landscape. This allows the linearised population projection matrix to be

written as

A(x) = A0 + εA0 ◦Q1(x) .

and by taking its Taylor series (see Appendix A), we can write the dispersal kernel as

K(z, y) = K0(z) + ε

n∑
j=1

qj1(y)Kj(z) +
1

2
ε2

n∑
i,j=1

qi1(y)qj1(y)Ki,j(z) + O(ε3) .

For ease of notation, we use F =
{
αi, Aj,k

}
i,j,k=1,··· to refer to these landscape parameters (in the

context of the IDE model, the growth and dispersal parameters uniquely define the landscape).

VI. The spatially varying parameters αj(x) and Ai,j(x) are L-periodic for some L ∈ (0,∞), for example

αj(x+ L) = αj(x) for all x ∈ R .

Conditions I, II and VI guarantee that we have solutions with a well-defined asymptotic wave-speed. Con-

ditions III and IV guarantee that these will be equal to the asymptotic wave-speeds of solutions to the

linearisation of (1) around ut(x) = 0 with initial compact support [30]. Condition V enables us to use regu-

lar perturbation methods. We will assume the additional conditions (V-VI) for IDEs on periodic landscapes,

but will assume only a modified form of Condition V (that the homogeneous parameters are the spatial

averages of the parameters over the whole landscape) when considering non-periodic landscapes.

The linearisation of (1) is

ut+1(x) =

∫ ∞
−∞

[K(x− y, y) ◦A(y)]ut(y) dy . (4)

where A(x) is the linearisation of B(u, x) around u = 0.
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For each linearised IDE (4) and each value of ε there is a family of periodic travelling-wave (PTW)

solutions

u(t, x) = exp (s(c(s, ε)t− x))φs(x) , (5)

where s is the travelling wave’s decay rate (its average steepness), c(s, ε) is the wave-speed and φs(x) is a

vector valued function on [0, L). The asymptotic wave-speed is given by

ĉ(ε) = min
s>0

[c(s, ε)] . (6)

Substituting (5) into the linearised IDE (4), we get a dispersion relation, which gives the wave-speed

c(s, ε) in terms of an eigenvalue of a linear operator Fs. Since our landscapes have the form F = F0 + εF1

where ε� 1 and the spatial average of F1 is zero (Condition V), we can use regular perturbation theory to

find the expansion for the wave-speeds (see Appendix B). We find that, for any IDE satisfying conditions

I-VI, the wave-speed function c(s, ε) of the heterogeneous problem differs by only O(ε2) from the wave-speed

function c(s, 0) of the spatially averaged homogeneous IDE with landscape F0, i.e.

c(s, ε) = c(s, 0) + O(ε2) as ε→ 0 (7)

where c(s, 0) is the asymptotic wave-speed for the model with homogeneous parameters F0. By Condition

II, we have that

ĉ(0) < lim
s→∞

c(s, 0) .

This enables us to derive the stronger condition (see Appendix B) that

ĉ(ε) = ĉ(0) + O(ε2) as ε→ 0 .

2.2. Wave-Speed Approximation for Stage-Structured Periodic Landscapes

We have seen that the homogeneous approximation is better than expected (the error scales with the

square of the relative heterogeneity coefficient ε2 rather than ε). However, as ε is increased, the homogeneous

approximation becomes less accurate. When this occurs, or a more exact result is required, we can find a

second order approximation. To do this, we use the asymptotic analysis developed in the previous section

and in Appendix B to find the coefficient of the O(ε2) term in the expansion of the wave-speed ĉ(ε) for non

stage-structured and stage-structured populations. A full derivation of this approximation is given for Stage-

Structured IDEs in Appendix C. We find that the O(ε2) approximation ĉ2(ε) to the asymptotic wave-speed
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is given by

ĉ2(ε) = min
s>0

{
1

s
log
(
ψ̃s ·

[
M0(s) ◦A0 + ε2H2(s)

]
ψs

)}
(8)

where M0(s) is the moment generating function of the homogeneous kernel matrix K0(z) and A0 is the

homogeneous intrinsic population projection matrix. ψ̃s and ψs are left and right eigenvectors of M0(s)◦A0

chosen such that ψ̃s ·ψs = 1, ε is the parameter determining the relative scale of the heterogeneity and H2(s)

is

H2(s) =
∑
n6=0

A0 ◦

M0(s) ◦C−n +

n∑
j=1

γj−nM
j(s)

[A0 ◦
(
M0(s)−M0

(
s− 2πin

L

))]−1

·

A0 ◦

M0

(
s− 2πin

L

)
◦Cn +

n∑
j=1

γjnM
j

(
s− 2πin

L

)
+

A0 ◦

 n∑
j=1

γj−nM
j(s) ◦Cn +

1

2

n∑
i,j=1

γi−nγ
j
nM

i,j(s)

 . (9)

Mj(s) is the moment generating function of the first derivative of the kernel K with respect to qj , Mi,j(s)

is the moment generating function of the second derivative of K with respect to qi and qj , and Cn and γjn

are the coefficients in the Fourier series of Q1(x) and qj1(x), i.e.

Q1(x) =
∑
n 6=0

Cn exp

(
2πinx

L

)
and qj1(x) =

∑
n 6=0

γjn exp

(
2πinx

L

)
.

2.3. Wave-Speed Approximation for Non-Stage-Structured Periodic Landscapes

The second order approximation presented in the previous subsection is in general rather complicated,

but in the absence of stage-structure, the approximation (8) simplifies to

ĉ2(ε) = min
s>0

{
1

s
log
(
r0M0(s) + ε2H2(s)

)}
, (10)

where r0 is the intrinsic population growth rate, M0(s) is the moment generating function of the homogeneous

kernel K0(z) and H(s) is given by
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H2(s) =r0
∑
n 6=0


(
C−nM0(s) +

∑n
j=1 γ

j
−nM

j(s)
)(

CnM0

(
s− 2πin

L

)
+
∑n
j=1 γ

j
nM

j
(
s− 2πin

L

))
M0(s)−M0

(
s− 2πin

L

)
+

n∑
j=1

γj−nM
j(s)Cn +

1

2

n∑
i,j=1

γi−nγ
j
nM

i,j(s)

 , (11)

where M j(s) is the moment generating function of the first derivative of the kernel K with respect to qj ,

M i,j(s) is the moment generating function of the second derivative of K with respect to qi and qj , and where

the Cn and γjn are the coefficients in the Fourier series of Q1(x) and qj1(x), i.e.

Q1(x) =
∑
n 6=0

Cn exp

(
2πinx

L

)
and qj1(x) =

∑
n 6=0

γjn exp

(
2πinx

L

)
.

2.4. Extension to Non-Periodic Landscapes

In the previous three subsections, we showed analytically that the homogeneous approximation is better

than expected for periodic landscapes with small ε and derived a second order approximation to the wave-

speed for periodic landscapes. To do this, we have required the landscape to be periodic. We now discuss

the possibility of extending these results to non-periodic landscapes.

For periodic landscapes, we can assume that solutions to the linearised IDE are periodic travelling waves.

This allows us to formulate a dispersion relation (the eigenvalue problem) for the wave-speed c(s) of the

solution to the linearised IDE for each value of the decay rate s. We can then take the minimum of c(s) as

the asymptotic wave-speed for solutions with initial conditions with compact support.

If the landscape is non-periodic (e.g. stochastically generated or quasi-periodic), then these methods

cannot be applied. However, while it is not clear whether the approximation presented in §2.3 can be

generalised to non-periodic landscapes, through the numerical simulations presented in §3.2 we see that the

wave-speeds of solutions to IDEs on weakly heterogeneous stochastically-generated landscapes differ from

their spatial homogenisations by o(ε) (i.e. as ε is made arbitrarily small, the difference becomes smaller than

any factor than ε). In §3.2 we will consider IDEs on landscapes satisfying conditions I-IV (the conditions in

the Introduction, but not in §2.1) and an additional condition:

V.b. The dispersal kernel K(z, x) is determined by a number of spatially varying parameters αj(x). These

parameters, together with the elements Ai,j(x) of the intrinsic population projection matrix A(x) =

B(0, x), are small bounded perturbations from their spatial mean, i.e.

αi(x) = αi0(1 + εqi1(x)) and Aj,k(x) = Aj,k0 (1 + εQj,k1 (x))
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where the relative heterogeneity coefficient ε� 1 and the relative perturbations qj1(x), Qi,j1 (x) are O(1)

and satisfy

∫ ∞
−∞

qi1(x)dx = 0 ,

∫ ∞
−∞

Qj,k1 (x)dx = 0 .

3. Examples

In this section, we consider two non-stage structured examples. In the first example (§3.1), we compare

the simulated wave-speeds of solutions to IDEs on periodic landscapes with the homogeneous (zeroth order)

and with the second order approximation introduced in §2.2. We show that both approximations are accurate

for a range of ε, with the second order approximation being more accurate, and appropriate for larger values

of ε. In the second example (§3.2), we show that the wave-speeds of IDE solutions on stochastically generated

(non-periodic) landscapes also exhibit o(ε) dependence on the relative heterogeneity coefficient ε and therefore

that the homogeneous approximation is appropriate for at least some stochastically generated landscapes with

very low environmental variation.

For the periodic example, we find the second order approximation presented in §2.3 for populations

with Gaussian and Laplace kernels on an infinite landscape of two types of alternating regions of equal

size, in which the growth/dispersal parameters take different sets of values. We compare this with the

asymptotic wave-speeds of simulated solutions to (1), showing that this approximation is accurate. For the

non-periodic example, we use numerical simulation to find the asymptotic wave-speeds of (1) with landscapes

of two types of alternating region in which the size of each individual region is randomly generated from

the Exponential distribution, to show that the asymptotic wave-speeds of IDEs on non-periodic landscapes

exhibit o(ε) sensitivity to the relative heterogeneity coefficient ε.

In this paper, we have derived an approximation to the wave-speed on general (stage-structured popu-

lations), but in the interests of brevity, detail only non stage-structured examples. For these examples, we

use the Beverton-Holt growth function for B(ut(x), x). This has been widely used in population modelling

(e.g. for plants, see [31]), with the population after the growth phase being given by the current population

u multiplied by the growth rate

f(u) =
r

1 + u
.

where u is the scalar population before the growth phase and r is the zero-population growth rate (f(0) = r).

Since the approximation depends only on the zero-population growth rate, we could have used any growth

function satisfying Condition II in §2.1 [17]. For both the periodic and non-periodic examples, we consider

the same three landscape scenarios:
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1. Only growth is varied and (mr,mα) = (1, 0) (Figure 1a,b)

2. Only dispersal is varied and (mr,mα) = (0, 1) (Figure 1c,d)

3. Growth and dispersal are varied and correlated and (mr,mα) = (1, 1) (Figure 1e,f)

where mr and mα are indicators of the relative strength of the heterogeneity in the growth and dispersal

parameters respectively.

3.1. Periodic Landscape

We consider a non stage-structured population on a landscape of two alternating types of region of equal

size. For each landscape considered, dispersal is given by either the Gaussian or Laplace kernel. The growth

and dispersal parameters at location x ∈ R depend only on which type of region x is in.

3.1.1. Derivation of the Analytical Approximation

We calculate the analytical approximation (8) for a landscape of two types of alternating region with

either a Gaussian or Laplace dispersal kernel. The non-structured growth rate r(x) is given by

r(x) =

 r0(1 + εmr) for x ∈
[
nL, nL+ L

2

)
r0(1− εmr) for x ∈

[
nL+ L

2 , (n+ 1)L
) ,

where r0 is the spatial mean of the growth rate and L is the landscape period. The mean dispersal distance

α(x) is given by

α(x) =

 α0(1 + εmα) for x ∈
[
nL, nL+ L

2

)
α0(1− εmα) for x ∈

[
nL+ L

2 , (n+ 1)L
) ,

where α0 is the spatial mean of α(x) and where mr and mα are the strengths of the growth and dispersal

heterogeneity. Therefore, using the definitions for the non-stage-structured approximation in §2.3, Q1(x) and

q1(x) are given by

Q1(x) =

 mr for x ∈
[
nL, nL+ L

2

)
−mr for x ∈

[
nL+ L

2 , (n+ 1)L
) and q1(x) =

 mα for x ∈
[
nL, nL+ L

2

)
−mα for x ∈

[
nL+ L

2 , (n+ 1)L
) .

Expressing Q1(x) and q1(x) as Fourier series,

Q1(x) =
∑

n∈Odd

2mr

πin
exp

(
2πinx

L

)
and q1(x) =

∑
n∈Odd

2mα

πin
exp

(
2πinx

L

)
so

11



(a) (b)

(c) (d)

(e) (f)

Figure 1: The intrinsic growth rate r (solid area, green online) and the mean dispersal distance α (solid line, blue online) for the
three landscape scenarios considered for the non-stage structured examples with periodic (a),(c),(e) and stochastic (b),(d),(f)
landscapes. In (a),(b) only the intrinsic growth rate r depends on the region type. In (c),(d) only the mean dispersal distance
α depends on region type. In (e),(f) both parameters depend on region type. The landscapes shown here have ε = 0.333.
When growth and dispersal are both varied, as in (e),(f), they need not be correlated but we consider the correlated case as an
example.
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Cn =


2mr
nπi if n is odd

0 if n is even
and γn =


2mα
nπi if n is odd

0 if n is even
.

Substituting this into (9), we get

H2(s) =r0
∑

n∈Odd

4

π2n2

([
mrM0(s) +mαM

1(s)
] [
M0(s)−M0

(
s− 2πin

L

)]−1
·
[
mrM0

(
s− 2πin

L

)
+mαM

1

(
s− 2πin

L

)]
+mrmαM

1(s) +
m2
α

2
M1,1(s)

)
. (12)

To compare this result with numerical simulations, we evaluate this for some specific kernels. We choose the

widely used Gaussian and Lapalce kernels due to their analytical tractability. The Gaussian dispersal kernel

is given in terms of the distance z = x − y and the dispersal heterogeneity function q(x) := 1 + q1(x) (see

Appendix A),

K(z, q) =
1

α0q
√

2π
exp

(
−z2

2(α0q)2

)
with the first K1(z, 1) and second K1,1(z, 1) derivatives of the Gaussian kernel K(z, q) with respect to q

evaluated at q = 1

K1(z, 1) =
1

α0

√
2π

(
z2

α2
0

− 1

)
exp

(
−z2

2α2
0

)

K1,1(z, 1) =
1

α0

√
2π

(
z4

α4
0

− 5
z2

α2
0

+ 2

)
exp

(
−z2

2α2
0

)
.

The Moment Generating Functions M0(s), M1(s) and M1,1(s) of K0(z) = K(z, 1), K1(z) and K1,1(z) are

M0(s) = exp

(
α2
0s

2

2

)
M1(s) = α2

0s
2 exp

(
α2
0s

2

2

)

M1,1(s) =
(
α2
0s

2 + α4
0s

4
)

exp

(
α2
0s

2

2

)
and H2(s) is given by

13



H2(s) =r0
∑

n∈Odd

4

π2n2

([
mr +mαα

2
0s

2
] [

exp

(
2πinα2

0s

L
+

2π2n2α2
0

L2

)
− 1

]−1

·

[
mr +mαα

2
0

(
s− 2πin

L

)2
]

+mrmαα
2
0s

2 +
m2
α

2

(
α2
0s

2 + α4
0s

4
))

exp

(
α2
0s

2

2

)
. (13)

The second kernel we consider is the Laplace dispersal kernel, which is given by

K(z, q) =
1

2α0q
exp

(
−|z|
α0q

)
with the first K1(z, 1) and second K1,1(z, 1) derivatives of the Laplace kernel K(z, q) with respect to q

evaluated at q = 1

K1(z, 1) =
1

2α0

(
|z|
α0
− 1

)
exp

(
−|z|
α0

)

K1,1(z, 1) =
1

2α0

(
|z|2

α2
0

− 4|z|
α0

+ 2

)
exp

(
−|z|
α0

)
.

The Moment Generating Functions M0(s), M1(s) and M1,1(s) of K0(z) = K(z, 1), K1(z) and K1,1(z) are

M0(s) =
1

1− s2α2
0

M1(s) =
2s2α2

0

(1− s2α2
0)2

M1,1(s) =
2s2α2

0

(1− s2α2
0)2

+
8s4α4

0

(1− s2α2
0)3

and H2(s) is given by

H2(s) =r0
∑

n∈Odd

4

π2n2

(
L2

4πα2
0n (πn+ iLs)

[
mr +

2mαs
2α2

0

(1− s2α2
0)

] [
mr +

2mα

(
s− 2πin

L

)
α2
0

(1−
(
s− 2πin

L

)2
α2
0)2

]

+
mαs

2α2
0

(1− s2α2
0)2

[
2mr +mα

(
1 +

4s2α2
0

1− s2α2
0

)])
. (14)

3.1.2. Numerical Results

In this section, we present the numerical errors of the homogeneous and second order approximations for

a range of parameters and scenarios. We simulate solutions to (1) for non stage-structured populations with

Gaussian and Laplace dispersal kernels and Beverton-Holt growth function on an alternating landscape with

two types of region of equal size. We measure the wave-speed c∗ of the simulation by finding the location of

the wave-front (the largest value of x where the population density is greater than some threshold value µ)
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for each t and using linear regression to fit a constant wave-speed for the values of t for which the wave-front

has settled into a periodic travelling wave (see Appendix D). We calculate the relative error of the simulated

wave-speed when compared to both the homogeneous approximation ĉ0, and the second order analytical

approximation ĉ2(ε) presented in (10). We take the spatial mean α0 of the dispersal parameter to be fixed at

α0 = 1 and the mean growth rate to be fixed at r0 = 1.2 and vary the relative heterogeneity coefficient ε and

the landscape period L. In §3.3, we fix ε = 0.3 and vary r and L for Gaussian landscapes and compare the

effect of heterogeneity (compared to homogeneous landscapes) for the periodic and non-periodic landscapes.

In both this section and the following one, we will explore each of the three periodic landscape scenarios

presented in Figure 1.

The relative error Ej of the j-th order approximation (for j = 0, 2) is given in terms of the approximation

ĉj and the simulated wave-speed c∗ by

Ej =
ĉj − c∗

c∗
.

Ej is a measure of the accuracy of the approximation, and is positive when the approximation is an over-

estimate of the numerical wave-speed, and negative when it is an under-estimate. Where Ej is small, ĉj is

a good approximation to the simulated wave-speed c∗ and hence the asymptotic wave-speed of solutions to

(1).

In Figures 2 and 3, we present the relative error of the homogeneous and second order approximations

to the wave-speed for a range of values of landscape period L and relative heterogeneity coefficient ε and

consider values in the domain 0 < L ≤ 10, 0 < ε < 0.5. We consider Gaussian (Figure 2a,c,e and Figure

3a,c,e) and Laplace (Figure 2b,d,f and Figure 3b,d,f) dispersal kernels, and allow spatial heterogeneity only

in the growth rate (Figure 2a,b and Figure 3a,b), only in the dispersal parameters (Figure 2c,d and Figure

3c,d) and in both growth and dispersal jointly (Figure 2e,f and Figure 3e,f).

In Figure 2, we see that, for all scenarios, the relative error E0 ∼ o(ε) as ε → 0 (the difference can be

made arbitrarily smaller than ε for sufficiently small ε), that the relationship between ε and the wave-speed is

monotone (except for a small region of parameter space in the top right of Figure 2e), and that the behaviour

of c∗ as ε increases depends on the landscape period L. For the Laplace kernel the simulated wave-speeds

for ε = 0 are about 2% higher than the homogeneous approximation due to numerical error, which explains

the small band of light blue for ε ∼ 0. We find that for ε < 0.3, the absolute value of the relative error of the

homogeneous approximation is less than 0.14. In §3.2, we will fix ε = 0.3 and vary the mean growth rate r

and landscape period L for the Gaussian kernel and the three landscape scenarios, to compare the behaviour

in the periodic and stochastically generated landscape. Here (see Figure 5), we find that for ε = 0.3, the

relative change of the simulated wave-speed in the heterogeneous landscape when compared to the simulated
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wave-speed in the homogeneous landscape is less than 0.21 for r > 1.05 in the range of parameters considered.

The homogeneous approximation is independent of ε and L, so is constant for the parameter values

considered in Figure 2. Therefore, for these parameter values, the relationship between the relative error

of the homogeneous approximation and the simulated wave-speed is linear. This allows us to use Figure 2

to consider the effects of r and L on the simulated wave-speed for the different kernels and heterogeneity

scenarios. When only the growth rate varies spatially (Figures 2a,b), increased ε only affects the wave-speed

for sufficiently large L, causing it to increase with ε. On the other hand, when only the dispersal parameter

varies spatially (Figures 2c,d), increased ε causes an increase only for samll L and for large L, either has no

effect (Laplace kernel, Figure 2d) or causes a decrease in wave-speed (Gaussian kernel, Figure 2c). When

both growth and dispersal vary together, the effect of ε for each L depends heavily on the type of kernel. For

the Gaussian kernel, the wave-speed increases as ε increases for small L and decreases for large L. For the

Laplace kernel, the wave-speed increases with ε for all values of L in the range considered.

In Figure 3, we plot the relative error E2 of the second order approximation ĉ2(ε). In Figures 3a,b only

the intrinsic growth rate depends on the type of region (Figure 1a), in Figures 3c,d only the mean dispersal

distance depends on the region type (Figure 1c), and in Figures 3e,f both the intrinsic growth rate r and the

mean dispersal distance α depend on region type, with one region type having higher r and higher α than

the other (Figure 1e). The populations corresponding to Figures 3a,c,d have Gaussian dispersal kernels and

those considered in Figures 3b,d,e have Laplace dispersal kernels.

The relationship between the landscape period L, the relative heterogeneity coefficient ε and the accuracy

of the second order approximation depends on which landscape scenario is being explored. When only growth

or dispersal varies with the environment, the relative error is small for all values of L and ε considered. When

growth and dispersal are both varied, the relative error is small for ε < 0.3 or small L, but becomes large

when ε and L are both large. This is due to the growth of higher order terms in the asymptotic expansion

of the eigenvalue ρ(s) = esc(s) of the dispersion relation (B.1) in (C.5) with respect to ε.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Relative Error of the homogeneous (zeroth order) approximation for Gaussian (a),(c),(e) and Laplace (b),(d),(f)
kernels for a range of heterogeneity strength ε and landscape period L, where spatial heterogeneity is present in the growth
rate (a),(b), the mean dispersal distance (c),(d) and both the growth rate and mean dispersal distance (e)-(f). The spatially
averaged growth rate and the spatial average of the mean dispersal distances are r0 = 1.2 and α0 = 1.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Relative Errors (min{0.1,max{−0.1, E}}) of the second order wave-speed approximation for Gaussian (a),(c),(e) and
Laplace (b),(d),(f) kernels for a range of heterogeneity strength ε and landscape period L, where spatial heterogeneity is present
in the growth rate (a),(b), the mean dispersal distance (c),(d) and both the growth rate and mean dispersal distance (e)-(f).
The spatially averaged growth rate and the spatial average of the mean dispersal distances are r0 = 1.2 and α0 = 1.
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3.2. Stochastic Landscape

We now consider the relationship between the environmental variation coefficient ε and the spread rate in

stochastically generated landscapes by numerically simulating solutions to IDEs on stochastic analogues of

the periodic landscapes considered in §3.1 (where the landscapes consisted of two alternating types of region

of equal size L/2). In the stochastically generated landscapes, the size of region (regardless of its type) is an

independent random variable with mean L/2. We fix the distribution of the random variables as the uniform

distribution on [L/4, 3L/4]. An advantage of the uniform distribution is that the lengths of the patches are

bounded above by 3L/4. This prevents populations becoming arbitrarily small in a region with low growth

rate and the resulting difficulties in simulation. We take the representative value r0 = 1.5 for the mean

growth rate. More formally, the length of each region Lj (irrespective of region type) is independently

Lj ∼ U
(
L

4
,

3L

4

)
.

To explore the relationship between the environmental variation coefficient ε and the asymptotic wave-

speed, we generated 50 landscapes with independently uniformly distributed region sizes for each combination

of dispersal kernel, landscape scenario (spatially varying growth, spatially varying dispersal and both spatially

varying growth and dispersal) and representative average landscape periods L = 2 and L = 4. We found

that generating 50 landscapes for each scenario was sufficient in this case, as further runs did not change

our conclusions. We simulated the IDE on each landscape for 0 ≤ ε ≤ 0.5. For each combination of kernel,

landscape scenario and mean landscape period L and each value of ε, we take the average wave-speed for

the different landscapes. We present these results in Figure 4 and find that for each kernel, heterogeneity

scenario and landscape period, the change in mean wave-speed for values of ε close to zero is very small. For

the parameters considered here, the relationship between ε and the wave-speed c is found to be monotone

increasing or decreasing and smooth.

We observe that the relationship between ε and the mean invasion speed is either convex with a minimum

at ε = 0 or concave with a maximum at ε = 0. This shows that wave-speed sensitivity reduces massively

for small ε, demonstrating a dependence of the form o(ε) and thus a lack of sensitivity to sufficiently small

perturbations of the landscape.

In Figure 5, we plot the relative change in wave-speed between the homogeneous landscape (ε = 0) and a

heterogeneous one (ε = 0.3) for the periodic landscapes introduced in §3.1 and the stochastically generated

landscapes introduced earlier in this section. We compare the homogeneous and heterogeneous wave-speeds

for all three landscape scenarios in Figure 1 and for a range of values of mean growth rate and (mean)

landscape period. We calculate the wave-speed for the stochastic case by taking the average wave-speed from

simulations on fifty different landscapes. We present only the results for the Gaussian dispersal kernel, but
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find a similar relationship between the periodic and stochastically generated plots for the Laplace kernel.

Where only the growth is varied (Figure 5a,b), the relative change in wave-speed is small for large growth

rate r0 > 8 or small landscape period (L < 5 for the periodic landscape, L < 2 for the stochastic landscape).

The relative change is highest for the smallest values of r0 and the largest values of L studied (r0 ∼ 1.5 and

L ∼ 20). When heterogeneity is only in dispersal (Figure 5c,d), for both the periodic and stochastic example,

increasing L decreases, and increasing r increases the relative change in wave-speed. For small values of L,

invasions in the heterogeneous landscape are faster in than in the corresponding homogeneous one, but for

larger values of L, heterogeneity slows invasions down. For intermediate L (L ∼ 10 for the periodic landscape

and L ∼ 5 for the stochastically generated landscape), there is no change in wave-speed between ε = 0 and

ε = 0.3. When heterogeneity is present in both dispersal and growth (Figure 5e,f), the relationship between

r, L and the relative change in wave-speed between the homogeneous and heterogeneous landscape is more

complex. For small L, the relative change is positive, and as L increases the relative change becomes negative

(as in the heterogeneous dispersal case). However, there is an additional positive peak for low r0 and high

L (the same location as the peak for the heterogeneous growth case). This more complex behaviour is likely

to be due to the combined effect of dispersal heterogeneity and growth heterogeneity.

When comparing the plots for periodic landscape (Figures 5a,c,e) and the corresponding plots for the

stochastically generated landscapes (Figures 5b,d,f), the qualitative relationships between r, L and the

relative change in wave-speed are the same, but are quantitatively different. This suggests that the wave-

speeds on stochastically generated landscapes have similar behaviour to wave-speeds on periodic landscapes,

giving us greater confidence in extending our main result (that the difference between heterogeneous and

homogeneous landscapes is o(ε)) to non-periodic landscapes.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Mean (solid lines) simulated wave-speeds, with standard deviations (transparent) of IDEs for Gaussian (a),(c),(e) and
Laplace (b),(d),(f) kernels with the spatial average of the mean dispersal distance α0 = 1 for landscape period L = 2 (blue) and
L = 4 (red) on stochastically generated landscapes, where spatial heterogeneity is present in the growth rate (a),(b), the mean
dispersal distance (c),(d) and both the growth rate and mean dispersal distance (e)-(f).
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Relative change in the wave-speed of solutions to IDEs with ε = 0.3 compared to the wave-speed of the corresponding
homogeneous IDE (i.e. the same IDE with ε = 0). The wave-speeds are for periodic (a),(c),(e) and the mean wave-speed of
fifty stochastically generated (b),(d),(f) landscapes with Gaussian dispersal, where heterogeneity is present only in the growth
(a),(b), where heterogeneity is present only in the dispersal (c),(d) and where heterogeneity is present both in the growth and
dispersal (e),(f).
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4. Discussion

In this paper, we have shown analytically that the wave-speeds of solutions to periodic IDEs with low

environmental variation differ from the wave-speeds of solutions to their homogenisations by a factor pro-

portional to ε2, where ε is the relative heterogeneity coefficient, and have shown numerically that a similar

result (that the wave-speeds differ by a factor less than ε) extends to the non-periodic landscapes considered.

Through numerical simulations, we have found that for the Laplace and Gaussian dispersal kernels, with

mean growth rate r = 1.2, spatial average of the mean dispersal distance α0 = 1 and relative heterogeneity

coefficient ε < 0.3 and a range of values of the landscape period L, the relative error of the homogeneous

approximation is less than 15% (see Figure 2). Additionally, for the Gaussian kernel with α0 = 1, ε = 0.3

and a range of values of r0 and L (with r > 1.05), the relative error is less than 21%. This means that the

wave-speed of the invasion in homogeneous landscapes is often a very good approximation to the wave-speed

even when ε is only moderately small. Additionally, our finding that the error was very small for ε ∼ 0 is in

agreement with the analytical result.

This means that for small values of ε, the homogeneous approximation is better than might initially

be expected. Therefore, for any landscape with low environmental variation, with dispersal given by any

exponentially bounded kernel, homogenising and using the comparatively simple formula for the asymptotic

wave-speed ĉ(0) in homogeneous landscapes may be a sensible approach to approximating the wave-speed

ĉ. This is useful for ecologists studying real landscapes, as small variations can be averaged out, making

the analytical calculations of the wave-speed much simpler. The straightforward homogeneous IDE can be

implemented, as in previous ecological studies (e.g. [8, 10, 18]), by taking these average values to parametrise

the IDE.

For more complex landscapes with large variation on small spatial scales but with less variation over large

scales, it may be possible to combine the methods presented in this paper with the methods presented by

Dewhirst and Lutscher [13] to justify the use of the homogeneous approximation. Dewhirst and Lutscher used

Riemann sums to show that rapidly varying landscapes could be approximated by their homogenisation, but

it seems reasonable that this could be extended to justify the removal of the rapidly oscillating frequencies

from the Fourier decomposition of the landscape even in the presence of frequencies with larger periods.

Assuming that the resulting smoothed landscape has low environmental variation, the analysis presented

in this paper could be used to justify the homogeneous approximation and thus enable the comparatively

simple expressions for the wave-speed derived by Kot [32] for non-stage-structured IDEs and by Neubert and

Caswell [18] for stage-structured IDEs to be used to approximate the speeds of real spreading populations

on complex heterogeneous landscapes.

For IDEs on periodic landscapes where more analytical accuracy is required, or the specific effects of the

heterogeneity on the wave-speed are being studied, we have derived a second order approximation ĉ2(ε) which
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incorporates the O(ε2) term in the asymptotic expansion of ρ(s) = esc(s). We have found ĉ2(ε) by linearising

the IDE, considering periodic travelling wave solutions and using regular perturbation theory. Unlike the

homogeneous approximation, the second order approximation has an ε dependence, so takes into account the

details of the heterogeneity, but is much more complex than the homogeneous approximation. Numerically,

we have found that for the Gaussian and Laplace kernels and ε < 0.3, the relative error was less than 4% for

r0 = 1.2, α0 = 1 and a range of values of L, thus demonstrating a greater degree of accuracy.

While intrinsic stochasticity and variation have been found to reduce populations’ spreading speeds [10,

33, 34], we have found that the effects of extrinsic/landscape variation to be more complex. Although the

relationship between the heterogeneity coefficient ε and the wave-speed is monotone (Figures 2 and 4), the

precise effect that increasing environmental variation has on the wave-speed has a complex dependence on

the dispersal kernel and mean dispersal distance α0, the mean growth rate r0 and the landscape period L. It

is likely that this is due to a complex interplay between increasing isolation of suitable habitat as ε increases

(which we would expect to reduce the spreading speed) and the clustering of good habitat (which we would

expect to increase the spreading speed). Which of these effects is stronger depends on the values of r0 and L

[35]. Therefore, to characterise the precise effects of increased ε on the spread rate accurately, it is necessary

to characterise the precise shape of the dispersal kernel and the structure of the landscape (i.e. the way the

growth and dispersal parameters vary spatially).

For both dispersal kernels in the periodic example, we have found (Figure 2) that for fixed mean growth

rate r0 = 1.2 that the effect of increased heterogeneity (ε) depends on the landscape period L, the choice

of dispersal kernel and the heterogeneity scenario (whether heterogeneity is present only in the growth rate,

the dispersal parameters, or in both simultaneously). Additionally, we have found that for the Gaussian

kernel and both periodic and stochastically generated landscapes (see Figure 5), that when ε is fixed and

r0 and L vary, the relative change in wave-speed is qualitatively similar for the periodic and non-periodic

cases. Additionally, in the case where growth and dispersal are heterogeneous and correlated, the relative

change in wave-speed (as a function of r0 and L) is the superposition (sum) of the relative changes in wave-

speed for the cases where only growth or dispersal are heterogeneous. We hypothesise that this is due to the

different relative strengths of the effects of spatially varying growth and dispersal for the two dispersal kernels.

Therefore, accurately characterising the dispersal kernel, the degree and type of environmental variation and

the dispersal pattern is of utmost importance when predicting the spread rate of a population.

In this paper, we have shown the O(ε2) dependence of the wave-speed on the environmental variation

coefficient for general stage-structured IDEs, but in the interests of brevity, have only considered non-stage-

structured examples. We anticipate that the approximation would show similar effectiveness on stage-

structured examples. Conversely, we have been able to show a lack of sensitivity in the wave-speed in

non-periodic landscapes to ε numerically, but have not been able to do so analytically. In §3, due to their
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wide use and analytical tractability, we have used the Laplace and Gaussian kernels. However, all the results

presented here are valid for any of the more complex exponentially bounded kernels which are often used in

ecology [36].

In summary, we have shown for periodic and non-periodic landscapes that the asymptotic wave-speed of

the model shows a lack of sensitivity to the environmental variation coefficient ε and therefore that the simpler

homogeneous approximation to the wave-speed is valid for landscapes with low environmental variation. For

situations where more accuracy is required, we have derived a second order approximation to the wave-speed

in terms of ε for periodic landscapes, and have shown it to be accurate through numerical simulation.
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Appendix A. Expansion of the Dispersal Kernel

The form of the stage-structured dispersal kernel K(x− y, y) of dispersers from point y is dependent on

the value of each of the scalar parameters α1(y), · · · , αn(y). Each of these take the form

αj(y) = αj0[1 + εqj1(y)]

where qj(y) ∼ O(1). At each y, the kernel can be written as

K(z, y) = K(z, α1(y), · · · , αn(y))

= K(z, α1
0q

1, · · · , αn0 qn)

= K(z, α1
0[1 + εq11(y)], · · · , αn0 [1 + εqn1 (y)]) .

We can expand the kernel in terms of its Taylor series in the variables q1, · · · , qn,

K(z, y) = K(z, α1
0, · · · , αn0 ) + ε

n∑
j=1

qj1(y)
∂K

∂qj
(z, α1

0, · · · , αn0 )

+
1

2
ε2

n∑
i,j=1

qi1(y)qj1(y)
∂2K

∂qi∂qj
(z, α1

0, · · · , αn0 ) + O(ε3)

= K0(z) + ε

n∑
j=1

qj1(y)Kj(z) +
1

2
ε2

n∑
i,j=1

qi1(y)qj1(y)Ki,j(z) + O(ε3)

= K0(z) + εK1(z, y) + ε2K2(z, y) + O(ε3) .
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Since we are given that
∫ L
0
qj1(y)dy = 0 (Condition V), the spatial average of K1(z, x) in x over [0, L) is given

by

∫ L

0

K1(z, y)dy =

n∑
j=1

(∫ L

0

qj1(y)dy

)
Kj(z)

= 0

for all z ∈ R.

Appendix B. Asymptotic Expansion of the Wave-speed

We substitute the periodic travelling wave solution

u(t, x) = exp [s(c(s, ε)t− x)]φs(x)

into the L-periodic linear IDE (4) to give us the dispersion relation

exp [sc(s, ε)]φs(x) =

∫ ∞
−∞

[
K(x− y, y)es(x−y) ◦A(y)

]
φs(y) dy . (B.1)

on x ∈ [0, L], with boundary conditions φs(0) = φs(L). There is one additional degree of freedom in our

choice of φs(x), but this will be removed when we fix the size of the first term in its asymptotic expansion

to be equal to 1. This dispersion relation has the general form

ρ(s, ε)φs(x) = (F εφs)(x) , (B.2)

where the operator is an O(ε) perturbation from the homogeneous spatial average over [0, L]. Hence we can

write

F ε = F ε0 + εF ε1 + O(ε2)

where the O(1) term corresponds to the unperturbed homogeneous case, i.e. F ε0 = F 0,

(F 0u)(x) =

∫ ∞
−∞

[
K0(x− y)es(x−y) ◦A0

]
u(y) dy

where A0 is the spatial average of the intrinsic population projection matrix A(x) and K0(z) is the spatially

homogeneous dispersal kernel defined in Appendix A. We can therefore write

F ε = F 0 + εF ε1 + O(ε2)
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This is a regular perturbation problem, and can be solved by substituting asymptotic expansions of φs(x)

and ρ(s, ε) in ε,

φs(x) =φs,0(x) + εφs,1(x) + ε2φs,2(x) + · · ·

ρ(s, ε) =ρ0(s) + ερ1(s) + ε2ρ2(s) + · · · .

Substituting these into (B.2), the O(1) terms satisfy

ρ0(s)φs,0(x) = (F 0φs,0)(x) ,

i.e. ρ0(s) is the eigenvalue of the unperturbed homogeneous operator F 0,

ρ0(s) = ρ(s, 0)

and φs,0 is constant and equal to ψs. In the inner product space L2([0, L)), the adjoint operator F 0∗ of F 0

is given by

(F 0∗u)(x) =

∫ ∞
−∞

[
K0(x− y)es(x−y) ◦A0

]T
u(y) dy . (B.3)

This operator has a constant eigenvector φ∗s,0 corresponding to the principal eigenvalue ρ(s, 0). The O(ε)

terms in the eigenvalue equation satisfy

(F 0 − ρ(s, 0))φs,1 + (F ε1 − ρ1(s))φs,0 = 0 .

Taking the inner product of this with φ∗s,0, we find that

〈φ∗s,0|(F 0 − ρ(s, 0))φs,1〉 = 〈(F 0∗ − ρ(s, 0))φ∗s,0|φs,1〉 = 0

and that

〈φ∗s,0|(F ε1 − ρ1(s))φs,0〉 = 0 ;

rearranging, this gives us an expression for ρ1(s),

ρ1(s) =
〈φ∗s,0|F ε1φs,0〉
〈φ∗s,0|φs,0〉

. (B.4)

We find φ∗s,0 and φs,0 to be constant and equal to ψ̃s and ψs respectively. Without loss of generality, we
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choose ψ̃s ·ψs = 1, so

ρ1(s) =
1

L

∫ L

0

ψ̃s · (F ε1ψs)(x)dx . (B.5)

To evaluate this, we need the expression for (F ε1φ)(x), this is given by

∫ ∞
−∞

[A0 ◦ (K0(x− y) ◦Q1(y) + K1(x− y, y))] es(x−y)φ(y) dy . (B.6)

where K0, K1 are defined in Appendix A and Q1 is the relative perturbation of the population projection

matrix. Substituting φ(x) = ψs, and taking the inner product with ψ̃s, we have

ρ1(s) =
1

sL

∫ L

0

ψ̃s ·
∫ ∞
−∞

[A0 ◦ (K0(x− y) ◦Q1(y) + K1(x− y, y))] es(x−y)ψsdydx . (B.7)

To evaluate this, we introduce the change of variables

w = x− y and z = y (B.8)

and (B.7) becomes

ρ1(s) =
1

sL
ψ̃s ·

[
A0 ◦

∫ ∞
−∞

∫ L−w

−w
(K0(w) ◦Q1(z) + K1(w, z)) esw dzdw

]
ψs

=
1

sL
ψ̃s ·

[
A0 ◦

(
M0(s) ◦

∫ L−w

−w
Q1(z)dz +

∫ ∞
−∞

∫ L−w

−w
K1(w, z)dz esw dw

)]
ψs . (B.9)

Since Q1(z) and K1(w, z) are L-periodic in z and
∫ L
0
Q1(x)dx = O and

∫ L
0
K1(w, x)dx = O (for all w ∈ R),

we have

∫ L−w

−w
Q1(z)dz = O and

∫ L−w

−w
K1(w, z)dz = O

and therefore that

ρ1(s) = 0 . (B.10)

This means that
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ρ(s, ε) = ρ(s, 0) + O(ε2)

and

c(s, ε) =
1

s
log(ρ(s, 0) + O(ε2))

= c(s, 0) + O(ε2) . (B.11)

This gives us that as ε → 0+, |c(s, ε) − c(s, 0)| < R(s)ε2; however the s-dependence (a lack of uniform

convergence) means that, on its own, this is not enough to show that the asymptotic wave-speeds ĉ(ε) and

ĉ(0) (the minima of c(s, ε) and c(s, 0)) differ by O(ε2) in the ε → 0+ limit. To do this, we need to assume

that the asymptotic wave-speed is not attained in the limit as s→∞, i.e.

ĉ(0) < lim
s→∞

c(s, 0) . (B.12)

If this condition did not hold, then the asymptotic t → ∞ limit of the solution to the linearised IDE (4)

would not be smooth and would be infinite in the wave-back, so for physically realistic IDEs, we can assume

(B.12). The inequality in (B.12) allows us to choose an η > 0 such that

ĉ(0) + 2η < lim
s→∞

c(s, 0) , (B.13)

so there exists an s̃ such that

c(s, 0) > ĉ(0) + 2η for all s > s̃ . (B.14)

We define

Ω = {(s, ε) ∈ R2 : s ≥ 0 and ε ∈ [0, 0.5]} .

We then define two sets

S1 = {(s, ε) ∈ Ω : ε = 0 and c(s, ε) ≤ ĉ(0) + η}

S2 = {(s, ε) ∈ Ω : c(s, ε) ≤ ĉ(0) + 2η}

∂S2 = {(s, ε) ∈ Ω : c(s, ε) = ĉ(0) + 2η} .
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S1 and S2 are closed by the continuity of c(s, 0). By (B.14) S1 and S2 are both bounded,

S1,S2 ⊂ [0, s̃]× [0, 0.5]

so S1 and S2 are both compact, and hence ∂S2 is also compact. By construction, no point can be in both

S1 and S2, so

S1 ∩ ∂S2 = ∅ . (B.15)

Given (B.15) and the compactness of S1 and ∂S2, there is a minimum distance between points in S1 and

points in ∂S2. This means that there exists an ε∗ > 0 such that

S∗1 = {(s, ε) ∈ Ω : ε ∈ [0, ε∗] and c(s, ε) ≤ ĉ(0) + η}

is a proper subset of S2. Since S∗1 ⊂ S2, S∗1 is compact and c is bounded on S∗1 , and given (B.11), the function

A(s, ε) =

 (c(s, ε)− c(s, 0)) /ε2 for ε ≥ 0

0 for ε = 0

is bounded on S∗1 , with supremum (lowest upper bound) Ã. Then, given that

c(s, ε)− c(s, 0) = ε2A(s, ε)

and that for ε sufficiently close to 0, mins>0 c(s, ε) < mins>0 c(s, 0) + η, so the minima is attained in S∗1 , we

have

|min
s≥0

c(s, ε)−min
s≥0

c(s, 0)| = | min
s∈S∗

1

c(s, ε)− min
s∈S∗

1

c(s, 0)|

≤ ε2 max
s∈S∗

1

A(s, ε)

= ε2Ã .

So the asymptotic wave-speeds ĉ(ε) and ĉ(0) satisfy

ĉ(ε) = ĉ(0) + O(ε2) as ε→ 0+ .
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Appendix C. Derivation of the Second Order Term for Homogeneous Dispersal

In this section, we derive the second order approximation to the wave-speed presented in §2.2 for growth

and dispersal parameters with low spatial variation. The O(ε2) approximation is

ĉ2 = min
s>0

[
1

s
log
(
ρ(s, 0) + ε2ρ2(s)

)]
. (C.1)

We therefore need to find an expression for ρ2(s) in terms of lower order eigenvalues and eigenvectors. This

is given by the O(ε2) terms in the eigenvalue equation (B.2)

(F 0 − ρ(s, 0))φs,2 + (F ε1 − ρ1(s))φs,1 + (F ε2 − ρ2(s))φs,0 = 0 .

Taking the inner product with φ∗s,0 to eliminate the φs,2 term, noting that ρs,1 = 0 and that we have chosen

the spatially constant eigenvectors φ∗s,0 = ψ̃s and φs,0 = ψs such that ψ̃s · ψs = 1, and re-arranging, we

have

ρ2(s) =
1

L
〈φ∗s,0|F ε1φs,1 + F ε2φs,0〉

=
1

L
ψ̃s ·

∫ L

0

A0 ◦
∫ ∞
−∞

 n∑
j=1

qj1(y)Kj(x− y) + K0(x− y) ◦Q1(y)

 es(x−y)φs,1(y)

+

1

2

n∑
i,j=1

qi1(y)qj1(y)Ki,j(x− y) +

n∑
j=1

qj1(y)Kj(x− y) ◦Q1(y)

 es(x−y)dydxψs .

To evaluate this, we need an expression for φs,1. To do this, we again consider the O(ε) terms in (B.2), which

given that ρ1(s) = 0 is

(F 0 − ρ(s, 0))φs,1 + F ε1φs,0 = 0 (C.2)

where φs,1 is L-periodic. This becomes

∫ ∞
−∞

[
A0 ◦K0(x− y)es(x−y)

]
φs,1(y)dy − [A0 ◦M0(s)]φs,1(x)

+

∫ ∞
−∞

 n∑
j=1

qj1(y)Kj(x− y) ◦A0 + K0(x− y) ◦A1(y)

 es(x−y)ψsdy = 0 , (C.3)

with boundary conditions φs,1(0) = φs,1(L). To find φs,1(x), we take the Fourier transform of (C.3). This

gives
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φ̂s,1(η) = [A0 ◦ (M0(s)−M0(s− 2πiη))]
−1

A0 ◦

M0(s− 2πiη) ◦ Q̂1(η) +

n∑
j=1

q̂j(η)Mj(s− 2πiη)

ψs .

The expression for ρ2(s) is given by

ρ2(s) =
1

L

∫ L

0

ψ̃s

∫ ∞
−∞

∫ ∞
−∞

A0 ◦

M0(s− 2πiξ) ◦ Q̂1(ξ − η) +

n∑
j=1

q̂j(ξ − η)Mj(s− 2πiξ)


· [A0 ◦ (M0(s)−M0(s− 2πiη))]

−1

A0 ◦

M0(s− 2πiη) ◦ Q̂1(η) +

n∑
j=1

q̂j(η)Mj(s− 2πiη)


+

A0

 n∑
j=1

q̂j(ξ − η)Mj(s− 2πiξ) ◦ Q̂1(η)

+
1

2

n∑
i,j=1

q̂i(ξ − η)q̂j(η)Mi,j(s− 2πiξ)

dηψse
2πiξxdξdx . (C.4)

Since Q1(x) and qj1(x) are L-periodic and have spatial average ON (the N ×N matrix of zeros) and 0, we

can write them as Fourier series with the constant terms C0 and γj0 equal to zero,

Q1(x) =
∑
n6=0

Cn exp

(
2πinx

L

)
and qj1(x) =

∑
n 6=0

γjn exp

(
2πinx

L

)

where C−n = C̄n and γ−n = γ̄n for all j and all n ∈ N. The Fourier transforms of Q1(x) and qj1 are

Q̂1(ξ) =
∑
n 6=0

Cnδ
(
ξ − n

L

)
and qj1(x) =

∑
n 6=0

γjnδ
(
ξ − n

L

)
.

Substituting these into (C.4), we get

ρ2(s) = ψ̃s

(∑
n6=0

A0 ◦

M0(s) ◦C−n +

n∑
j=1

γj−nM
j(s)

[A0 ◦
(
M0(s)−M0

(
s− 2πin

L

))]−1

·

A0 ◦

M0

(
s− 2πin

L

)
◦Cn +

n∑
j=1

γjnM
j

(
s− 2πin

L

)
+

A0 ◦

 n∑
j=1

γj−nM
j(s) ◦Cn +

1

2

n∑
i,j=1

γi−nγ
j
nM

i,j(s)

)ψs . (C.5)

In (C.1), we defined the second order approximation for the asymptotic wave-speed of solutions to the

models with initial compact support in terms of ρ(s, 0) and ρ2(s). Substituting (C.5) into (C.1), we obtain
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the expressions for ĉ2 presented in §2.2.

Appendix D. Numerical Methods

In §3 (Examples), we compare our analytical results to simulations of the IDE. We now discuss the

numerical methods used in carrying out the simulations.

We simulate the IDEs by discretising the population density function and dispersal kernels into domains of

non-dimensional length ≈ 0.0015. Since the kernels in each type of region are dependent only on the dispersal

distance x− y, the RHS of (1) can be written as the sum of two terms, with one referring to dispersal from

one region type, and the other to dispersal from the other type. Since the dispersal pattern from each type of

region does not vary within that region type, the integrals are convolutions of the population density function

in that region type and the dispersal kernel from that region type. Under the discretisation, the integral

convolution of the population density function and dispersal kernel becomes a discrete convolution which

we calculate using the Fourier convolution theorem and Fast Fourier Transform (FFT) [37]. We assume

(and observe numerically) the solution will have settled into a travelling wave by the time the wave-front

has reached x = 100. We run the simulations until x = 200 and use the position of the wave-front at each

time-step between these two events to find the asymptotic wave-speed by fitting a linear function to the data.

Numerically, we find that (after an initial transient) the wave-front maintains the same exponential shape

and shifts by a fixed distance. Therefore, the observed wave-speed is independent of the final time choice,

and our choice of numerical threshold for invasion µ which we thereafter take as µ = 0.0005.
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[4] P. Pyšek, D. M. Richardson, Invasive species, environmental change and management, and health, Annu.

Rev. Env. Resour. 35 (1) (2010) 25–55.

[5] P. M. Vitousek, C. M. D’Antonio, L. L. Loope, R. Westbrooks, et al., Biological invasions as global

environmental change, Am. Sci. 84 (5) (1996) 468–478.

[6] Y. Zhou, M. Kot, Discrete-time growth-dispersal models with shifting species ranges, Theor. Ecol. 4 (1)

(2011) 13–25.

[7] J. Bennie, J. A. Hodgson, C. R. Lawson, C. T. R. Holloway, D. B. Roy, T. Brereton, C. D. Thomas, R. J.

Wilson, Range expansion through fragmented landscapes under a variable climate, Ecol. Lett. 16 (7)

(2013) 921–929.

[8] J. M. Bullock, S. M. White, C. Prudhomme, C. Tansey, R. Perea, D. A. P. Hooftman, Modelling spread

of British wind-dispersed plants under future wind speeds in a changing climate, J. Ecol. 100 (1) (2012)

104–115.

[9] J. M. Travis, M. Delgado, G. Bocedi, M. Baguette, K. Bartoń, D. Bonte, I. Boulangeat, J. A. Hodgson,
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