52 research outputs found

    Detecting Life-bearing Extra-solar Planets with Space Telescopes

    Full text link
    One of the promising methods to search for life on extra-solar planets (exoplanets) is to detect life's signatures in their atmospheres. Spectra of exoplanet atmospheres at the modest resolution needed to search for oxygen, carbon dioxide, water, and methane will demand large collecting areas and large diameters to capture and isolate the light from planets in the habitable zones around the stars. For telescopes using coronagraphs to isolate the light from the planet, each doubling of telescope diameter will increase the available sample of stars by an order of magnitude, indicating a high scientific return if the technical difficulties of constructing very large space telescopes can be overcome. For telescopes detecting atmospheric signatures of transiting planets, the sample size increases only linearly with diameter, and the available samples are probably too small to guarantee detection of life-bearing planets. Using samples of nearby stars suitable for exoplanet searches, this paper shows that the demands of searching for life with either technique will require large telescopes, with diameters of order 10m or larger in space.Comment: 15 pages, 6 figures, submitted to Ap.

    Optical/IR from ground

    Get PDF
    Optical/infrared (O/IR) astronomy in the 1990's is reviewed. The following subject areas are included: research environment; science opportunities; technical development of the 1980's and opportunities for the 1990's; and ground-based O/IR astronomy outside the U.S. Recommendations are presented for: (1) large scale programs (Priority 1: a coordinated program for large O/IR telescopes); (2) medium scale programs (Priority 1: a coordinated program for high angular resolution; Priority 2: a new generation of 4-m class telescopes); (3) small scale programs (Priority 1: near-IR and optical all-sky surveys; Priority 2: a National Astrometric Facility); and (4) infrastructure issues (develop, purchase, and distribute optical CCDs and infrared arrays; a program to support large optics technology; a new generation of large filled aperture telescopes; a program to archive and disseminate astronomical databases; and a program for training new instrumentalists

    Experimental Design for the Gemini Planet Imager

    Full text link
    The Gemini Planet Imager (GPI) is a high performance adaptive optics system being designed and built for the Gemini Observatory. GPI is optimized for high contrast imaging, combining precise and accurate wavefront control, diffraction suppression, and a speckle-suppressing science camera with integral field and polarimetry capabilities. The primary science goal for GPI is the direct detection and characterization of young, Jovian-mass exoplanets. For plausible assumptions about the distribution of gas giant properties at large semi-major axes, GPI will be capable of detecting more than 10% of gas giants more massive than 0.5 M_J around stars younger than 100 Myr and nearer than 75 parsecs. For systems younger than 1 Gyr, gas giants more massive than 8 M_J and with semi-major axes greater than 15 AU are detected with completeness greater than 50%. A survey targeting young stars in the solar neighborhood will help determine the formation mechanism of gas giant planets by studying them at ages where planet brightness depends upon formation mechanism. Such a survey will also be sensitive to planets at semi-major axes comparable to the gas giants in our own solar system. In the simple, and idealized, situation in which planets formed by either the "hot-start" model of Burrows et al. (2003) or the core accretion model of Marley et al. (2007), a few tens of detected planets are sufficient to distinguish how planets form.Comment: 15 pages, 9 figures, revised after referee's comments and resubmitted to PAS

    Long-lived space observatories for astronomy and astrophysics

    Get PDF
    NASA's plan to build and launch a fleet of long-lived space observatories that include the Hubble Space Telescope (HST), the Gamma Ray Observatory (GRO), the Advanced X Ray Astrophysics Observatory (AXAF), and the Space Infrared Telescope Facility (SIRTF) are discussed. These facilities are expected to have a profound impact on the sciences of astronomy and astrophysics. The long-lived observatories will provide new insights about astronomical and astrophysical problems that range from the presence of planets orbiting nearby stars to the large-scale distribution and evolution of matter in the universe. An important concern to NASA and the scientific community is the operation and maintenance cost of the four observatories described above. The HST cost about 1.3billion(1984dollars)tobuildandisestimatedtorequire1.3 billion (1984 dollars) to build and is estimated to require 160 million (1986 dollars) a year to operate and maintain. If HST is operated for 20 years, the accumulated costs will be considerably more than those required for its construction. Therefore, it is essential to plan carefully for observatory operations and maintenance before a long-lived facility is constructed. The primary goal of this report is to help NASA develop guidelines for the operations and management of these future observatories so as to achieve the best possible scientific results for the resources available. Eight recommendations are given

    The Hubble Ultra Deep Field

    Get PDF
    This paper presents the Hubble Ultra Deep Field (HUDF), a one million second exposure of an 11 square minute-of-arc region in the southern sky with the Hubble Space Telescope. The exposure time was divided among four filters, F435W (B435), F606W (V606), F775W (i775), and F850LP (z850), to give approximately uniform limiting magnitudes mAB~29 for point sources. The image contains at least 10,000 objects presented here as a catalog. Few if any galaxies at redshifts greater than ~4 resemble present day spiral or elliptical galaxies. Using the Lyman break dropout method, we find 504 B-dropouts, 204 V-dropouts, and 54 i-dropouts. Using these samples that are at different redshifts but derived from the same data, we find no evidence for a change in the characteristic luminosity of galaxies but some evidence for a decrease in their number densities between redshifts of 4 and 7. The ultraviolet luminosity density of these samples is dominated by galaxies fainter than the characteristic luminosity, and the HUDF reveals considerably more luminosity than shallower surveys. The apparent ultraviolet luminosity density of galaxies appears to decrease from redshifts of a few to redshifts greater than 6. The highest redshift samples show that star formation was already vigorous at the earliest epochs that galaxies have been observed, less than one billion years after the Big Bang.Comment: 44 pages, 18 figures, to appear in the Astronomical Journal October 200

    Discovery of Reflection Nebulosity Around Five Vega-like Stars

    Get PDF
    Coronagraphic optical observations of six Vega-like stars reveal reflection nebulosities, five of which were previously unknown. The nebulosities illuminated by HD 4881, HD 23362, HD 23680, HD 26676, and HD 49662 resemble that of the Pleiades, indicating an interstellar origin for dust grains. The reflection nebulosity around HD 123160 has a double-arm morphology, but no disk-like feature is seen as close as 2.5 arcsec from the star in K-band adaptive optics data. We demonstrate that uniform density dust clouds surrounding HD 23362, HD 23680 and HD 123160 can account for the observed 12-100 micron spectral energy distributions. For HD 4881, HD 26676, and HD 49662 an additional emission source, such as from a circumstellar disk or non-equilibrium grain heating, is required to fit the 12-25 micron data. These results indicate that in some cases, particularly for Vega-like stars located beyond the Local Bubble (>100 pc), the dust responsible for excess thermal emission may originate from the interstellar medium rather than from a planetary debris system.Comment: The Astrophysical Journal, in press for March, 2002 (32 pages, 13 figures

    GEMS Survey Data and Catalog

    Get PDF
    We describe the data reduction and object cataloging for the GEMS survey, a large-area (800 arcmin(2)) two-band (F606W and F850LP) imaging survey with the Advanced Camera for Surveys on the Hubble Space Telescope, centered on the Chandra Deep Field-South.STScI HST-GO-9500.01NASA GO-9500, NAS5-26555, NAG5-13063, NAG5-13102European Community’s Human Potential Programunder contractHPRN-CT-2002-00316, HPRN-CT-2002-00305McDonald Observator
    corecore