1,519 research outputs found

    A surface forces platform for dielectric measurements

    Get PDF
    Methods are described to implement dielectric spectroscopy (frequency range 10(-1)-10(6) Hz) within a surface forces apparatus by using as electrodes silver sheets on the backside of mica. These methods are applied to study the competitive effects of surface alignment, confinement, and shear field on 5CB (5-cyanobiphenyl), a nematic liquid crystal at the experimental temperature of 25degreesC. In the planar orientation, films could be squeezed to a minimum thickness of approximate to5 Angstrom, the molecule's thickness. In the perpendicular (homeotropic) orientation, films could be squeezed to approximate to25 Angstrom, the expected thickness of the head-to-tail 5CB dimer. It was difficult to discuss responses at f >10(5) Hz quantitatively because the peak was not visible in the experimental frequency window. Nonetheless, the onset of the relaxation mode for the planar oriented molecules appears at higher frequency than for the homeotropic orientation. A slower relaxation mode, peaked at f approximate to 10 Hz, was assigned to electrode polarization due to the mobility of trace ions within the 5CB samples although these samples were >99.7% pure. The peak frequency was a factor of 3 slower with homeotropic than planar alignment and, in both cases, independent of film thickness except when the film thickness exceeded 10 mum. This was explained using a simple model based on the assumption that trace ions move to oppositely charged electrodes to form electric double layers. A small influence of shear on the dielectric response was observed but only when the dielectric response was measured at the same frequency as the large-amplitude shear deformation. Also described is the use of capacitance to measure force-distance profiles.open8

    Dielectric response of polymer films confined between mica surfaces

    Get PDF
    The thin-film dielectric response of organic films confined within a surface forces apparatus (SFA) and also between parallel sheets of atomically smooth mica is reported for the first time. Analysis is presented to infer dielectric properties of the organic film from the measured capacitance of the total system: sample, and mica sheets intervening between sample and electrodes. Measurements concerned the frequency dependence of normal-mode dielectric relaxation of cis-polyisoprene having dipoles aligned in the same direction along the chain backbone. We find that in thin-film geometries the peak frequency, f(peak), of normal mode dielectric loss (epsilon") is moderately lower than for bulk samples and that, more important, the expected terminal tail, observed in the bulk sample (epsilon"proportional to f for f < f(peak)), is not observed even at the lowest frequency examined. Thus the slow normal mode distribution is much broader and the terminal relaxation time is much longer for chains in the thin layers. These dielectric features are attributed to spatial constraints on global chain motion in the thin layers and also to adsorption of chains on mica surfaces when the layer thickness is comparable to the unperturbed chain dimension. Independent measurements of shear relaxation, performed using a SFA modified for measurement of dynamical mechanical shear rheology, found a tremendously retarded viscoelastic response relative to bulk samples. There is the possibility that the broad distribution of the dielectric response of individual polymer chains may correspond to the observed retarded viscoelastic relaxation. However, we cannot rule out the other possibility that the dielectrically detected relaxation of individual chains is still faster than the terminal viscoelastic relaxation and that the latter thus corresponds to the collective motion of many confined chains.open333

    Catalytic enzymes are active matter

    Get PDF
    Using a microscopic theory to analyze experiments, we demonstrate that enzymes are active matter. Superresolution fluorescence measurements—performed across four orders of magnitude of substrate concentration, with emphasis on the biologically relevant regime around or below the Michaelis–Menten constant—show that catalysis boosts the motion of enzymes to be superdiffusive for a few microseconds, enhancing their effective diffusivity over longer timescales. Occurring at the catalytic turnover rate, these fast ballistic leaps maintain direction over a duration limited by rotational diffusion, driving enzymes to execute wormlike trajectories by piconewton forces performing work of a few kBT against viscosity. The boosts are more frequent at high substrate concentrations, biasing the trajectories toward substrate-poor regions, thus exhibiting antichemotaxis, demonstrated here experimentally over a wide range of aqueous concentrations. Alternative noncatalytic, passive mechanisms that predict chemotaxis, cross-diffusion, and phoresis, are critically analyzed. We examine the physical interpretation of our findings, speculate on the underlying mechanism, and discuss the avenues they open with biological and technological implications. These findings violate the classical paradigm that chemical reaction and motility are distinct processes, and suggest reaction–motion coupling as a general principle of catalysis.11sciescopu

    Physiological Responses to Acute Cycling With Blood Flow Restriction

    Get PDF
    Aerobic exercise with blood flow restriction (BFR) can improve muscular function and aerobic capacity. However, the extent to which cuff pressure influences acute physiological responses to aerobic exercise with BFR is not well documented. We compared blood flow, tissue oxygenation, and neuromuscular responses to acute cycling with and without BFR. Ten participants completed four intermittent cycling (6 × 2 min) conditions: low-load cycling (LL), low-load cycling with BFR at 60% of limb occlusion pressure (BFR60), low-load cycling with BFR at 80% of limb occlusion pressure (BFR80), and high-load cycling (HL). Tissue oxygenation, cardiorespiratory, metabolic, and perceptual responses were assessed during cycling and blood flow was measured during recovery periods. Pre- to post-exercise changes in knee extensor function were also assessed. BFR60 and BFR80 reduced blood flow (~33 and ~ 50%, respectively) and tissue saturation index (~5 and ~15%, respectively) when compared to LL (all  \u3c 0.05). BFR60 resulted in lower VO, heart rate, ventilation, and perceived exertion compared to HL (all  \u3c 0.05), whereas BFR80 resulted in similar heart rates and exertion to HL (both  \u3e 0.05). BFR60 and BFR80 elicited greater pain compared to LL and HL (all  \u3c 0.05). After exercise, knee extensor torque decreased by ~18 and 40% for BFR60 and BFR80, respectively (both  \u3c 0.05), and was compromised mostly through peripheral mechanisms. Cycling with BFR increased metabolic stress, decreased blood flow, and impaired neuromuscular function. However, only BFR60 did so without causing very severe pain (\u3e8 on pain intensity scale). Cycling with BFR at moderate pressure may serve as a potential alternative to traditional high-intensity aerobic exercise

    Enzyme leaps fuel antichemotaxis

    Get PDF
    There is mounting evidence that enzyme diffusivity is enhanced when the enzyme is catalytically active. Here, using superresolution microscopy [stimulated emission-depletion fluorescence correlation spectroscopy (STED-FCS)], we show that active enzymes migrate spontaneously in the direction of lower substrate concentration (???antichemotaxis???) by a process analogous to the run-and-tumble foraging strategy of swimming microorganisms and our theory quantifies the mechanism. The two enzymes studied, urease and acetylcholinesterase, display two families of transit times through subdiffraction-sized focus spots, a diffusive mode and a ballistic mode, and the latter transit time is close to the inverse rate of catalytic turnover. This biochemical information-processing algorithm may be useful to design synthetic self-propelled swimmers and nanoparticles relevant to active materials. Executed by molecules lacking the decision-making circuitry of microorganisms, antichemotaxis by this run-and-tumble process offers the biological function to homogenize product concentration, which could be significant in situations when the reactant concentration varies from spot to spot

    Amelioration of salmonellosis in pre-weaned dairy calves fed Saccharomyces cerevisiae fermentation products in feed and milk replacer

    Get PDF
    Salmonellosis is an insidious and potentially epidemic problem in pre-weaned dairy calves. Managing this disease, or any other diarrheal disease, is a financial burden to producers. Calf mortalities and medicinal treatments are overt costs of salmonellosis, while hidden costs include hampered weight gains and persistent intestinal colonization of the pathogen. In this study, we examined the anti-Salmonella effects of Saccharomyces cerevisiae fermentation products (SCFP) incorporated into both the milk replacer and the starter grain. In a blinded study, 2–8 day-old calves were fed SCFP (n = 20 calves) or an SCFP-free Control (n = 20 calves) for two weeks before and three weeks after experimental challenge with Salmonella enterica serotype Typhimurium. Following the challenge, calves were monitored for clinical signs and parameters associated with salmonellosis. Calves were then euthanized and examined for rumen development and intestinal Salmonella colonization. When compared to calves that received milk replacer and feed lacking SCFP, calves fed SCFP had fewer bouts of diarrhea and fever. Rumens from these calves were more developed, as measured by the length of papillae, which is consistent with the enhanced weight gain observed in this treatment group. Additionally, Salmonella intestinal colonization was reduced in SCFP-fed calves and Salmonella fecal shedding disappeared at an earlier stage in these calves. This study revealed that the combination of two proprietary S. cerevisiae fermentation products provide marked benefit for preventing the negative effects of salmonellosis in pre-weaned dairy calves, while also boosting productivity. The mechanism of action needs to be clarified, but it may be related to the observed decrease in colonization by the pathogen and increase in rumen development

    Enzyme leaps fuel antichemotaxis

    Get PDF
    There is mounting evidence that enzyme diffusivity is enhanced when the enzyme is catalytically active. Here, using superresolution microscopy [stimulated emission-depletion fluorescence correlation spectroscopy (STED-FCS)], we show that active enzymes migrate spontaneously in the direction of lower substrate concentration (???antichemotaxis???) by a process analogous to the run-and-tumble foraging strategy of swimming microorganisms and our theory quantifies the mechanism. The two enzymes studied, urease and acetylcholinesterase, display two families of transit times through subdiffraction-sized focus spots, a diffusive mode and a ballistic mode, and the latter transit time is close to the inverse rate of catalytic turnover. This biochemical information-processing algorithm may be useful to design synthetic self-propelled swimmers and nanoparticles relevant to active materials. Executed by molecules lacking the decision-making circuitry of microorganisms, antichemotaxis by this run-and-tumble process offers the biological function to homogenize product concentration, which could be significant in situations when the reactant concentration varies from spot to spot
    corecore