5 research outputs found

    Key Role of the GITR/GITRLigand Pathway in the Development of Murine Autoimmune Diabetes: A Potential Therapeutic Target

    Get PDF
    BACKGROUND: The cross-talk between pathogenic T lymphocytes and regulatory T cells (Tregs) plays a major role in the progression of autoimmune diseases. Our objective is to identify molecules and/or pathways involved in this interaction and representing potential targets for innovative therapies. Glucocorticoid-induced tumor necrosis factor receptor (GITR) and its ligand are key players in the T effector/Treg interaction. GITR is expressed at low levels on resting T cells and is significantly up-regulated upon activation. Constitutive high expression of GITR is detected only on Tregs. GITR interacts with its ligand mainly expressed on antigen presenting cells and endothelial cells. It has been suggested that GITR triggering activates effector T lymphocytes while inhibiting Tregs thus contributing to the amplification of immune responses. In this study, we examined the role of GITR/GITRLigand interaction in the progression of autoimmune diabetes. METHODS AND FINDINGS: Treatment of 10-day-old non-obese diabetic (NOD) mice, which spontaneously develop diabetes, with an agonistic GITR-specific antibody induced a significant acceleration of disease onset (80% at 12 weeks of age). This activity was not due to a decline in the numbers or functional capacity of CD4(+)CD25(+)Foxp3(+) Tregs but rather to a major activation of 'diabetogenic' T cells. This conclusion was supported by results showing that anti-GITR antibody exacerbates diabetes also in CD28(-/-) NOD mice, which lack Tregs. In addition, treatment of NOD mice, infused with the diabetogenic CD4(+)BDC2.5 T cell clone, with GITR-specific antibody substantially increased their migration, proliferation and activation within the pancreatic islets and draining lymph nodes. As a mirror image, blockade of the GITR/GITRLigand pathway using a neutralizing GITRLigand-specific antibody significantly protected from diabetes even at late stages of disease progression. Experiments using the BDC2.5 T cell transfer model suggested that the GITRLigand antibody acted by limiting the homing and proliferation of pathogenic T cells in pancreatic lymph nodes. CONCLUSION: GITR triggering plays an important costimulatory role on diabetogenic T cells contributing to the development of autoimmune responses. Therefore, blockade of the GITR/GITRLigand pathway appears as a novel promising clinically oriented strategy as GITRLigand-specific antibody applied at an advanced stage of disease progression can prevent overt diabetes

    A history of high-power laser research and development in the United Kingdom

    Get PDF
    The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years

    Concomitant occurrence of FXTAS and clinically defined sporadic inclusion body myositis: report of two cases

    No full text
    This report describes unique presentations of inclusion body myositis (IBM) in two unrelated patients, one male and one female, with genetically and histologically confirmed fragile X-associated tremor/ataxia syndrome (FXTAS). We summarize overlapping symptoms between two disorders, clinical course, and histopathological analyses of the two patients with FXTAS and sporadic IBM, clinically defined per diagnostic criteria of the European Neuromuscular Centre. In case 1, a post-mortem analysis of available brain and muscle tissues is also described. Histopathological features (rimmed vacuoles) consistent with clinically defined IBM were detected in both presented cases. Postmortem testing in case 1 revealed the presence of an FMR1 premutation allele of 60 CGG repeats in both brain and skeletal muscle samples. Case 2 was a premutation carrier with 71 CGG repeats who had a son with FXS. Given that FXTAS is associated with immune-mediated disorders among premutation carriers, it is likely that the pathogeneses of IBM and FXTAS are linked. This is, to our knowledge, the first report of these two conditions presenting together, which expands our understanding of clinical symptoms and unusual presentations in patients with FXTAS. Following detection of a premutation allele of the FMR1 gene, FXTAS patients with severe muscle pain should be assessed for IBM
    corecore