6 research outputs found

    Epigenetic Mechanisms Regulate MHC and Antigen Processing Molecules in Human Embryonic and Induced Pluripotent Stem Cells

    Get PDF
    Background Human embryonic stem cells (hESCs) are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC) class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored. Methodology/Principal Findings We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM) components and NKG2D ligands (NKG2D-L) in hESCs, induced pluripotent stem cells (iPSCs) and NTera2 (NT2) teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP) assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1) and tapasin (TPN) components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of β2-microglobulin (β2m) light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB) were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and β2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs). Absence of HLA-DR and HLA-G expression was regulated by DNA methylation. Conclusions/Significance Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell allograft acceptance

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Effects of risperidone, amisulpride and nicotine on eye movement control and their modulation by schizotypy

    No full text

    Long-term safety and efficacy of patisiran for hereditary transthyretin-mediated amyloidosis with polyneuropathy: 12-month results of an open-label extension study

    No full text
    © 2020 Elsevier Ltd. All rights reserved.Background: Hereditary transthyretin-mediated amyloidosis is a rare, inherited, progressive disease caused by mutations in the transthyretin (TTR) gene. We assessed the safety and efficacy of long-term treatment with patisiran, an RNA interference therapeutic that inhibits TTR production, in patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy. Methods: This multicentre, open-label extension (OLE) trial enrolled patients at 43 hospitals or clinical centres in 19 countries as of Sept 24, 2018. Patients were eligible if they had completed the phase 3 APOLLO or phase 2 OLE parent studies and tolerated the study drug. Eligible patients from APOLLO (patisiran and placebo groups) and the phase 2 OLE (patisiran group) studies enrolled in this global OLE trial and received patisiran 0·3 mg/kg by intravenous infusion every 3 weeks with plans to continue to do so for up to 5 years. Efficacy assessments included measures of polyneuropathy (modified Neuropathy Impairment Score +7 [mNIS+7]), quality of life, autonomic symptoms, nutritional status, disability, ambulation status, motor function, and cardiac stress, with analysis by study groups (APOLLO-placebo, APOLLO-patisiran, phase 2 OLE patisiran) based on allocation in the parent trial. The global OLE is ongoing with no new enrolment, and current findings are based on the interim analysis of the patients who had completed 12-month efficacy assessments as of the data cutoff. Safety analyses included all patients who received one or more dose of patisiran up to the data cutoff. This study is registered with ClinicalTrials.gov, NCT02510261. Findings: Between July 13, 2015, and Aug 21, 2017, of 212 eligible patients, 211 were enrolled: 137 patients from the APOLLO-patisiran group, 49 from the APOLLO-placebo group, and 25 from the phase 2 OLE patisiran group. At the data cutoff on Sept 24, 2018, 126 (92%) of 137 patients from the APOLLO-patisiran group, 38 (78%) of 49 from the APOLLO-placebo group, and 25 (100%) of 25 from the phase 2 OLE patisiran group had completed 12-month assessments. At 12 months, improvements in mNIS+7 with patisiran were sustained from parent study baseline with treatment in the global OLE (APOLLO-patisiran mean change -4·0, 95 % CI -7·7 to -0·3; phase 2 OLE patisiran -4·7, -11·9 to 2·4). Mean mNIS+7 score improved from global OLE enrolment in the APOLLO-placebo group (mean change from global OLE enrolment -1·4, 95% CI -6·2 to 3·5). Overall, 204 (97%) of 211 patients reported adverse events, 82 (39%) reported serious adverse events, and there were 23 (11%) deaths. Serious adverse events were more frequent in the APOLLO-placebo group (28 [57%] of 49) than in the APOLLO-patisiran (48 [35%] of 137) or phase 2 OLE patisiran (six [24%] of 25) groups. The most common treatment-related adverse event was mild or moderate infusion-related reactions. The frequency of deaths in the global OLE was higher in the APOLLO-placebo group (13 [27%] of 49), who had a higher disease burden than the APOLLO-patisiran (ten [7%] of 137) and phase 2 OLE patisiran (0 of 25) groups. Interpretation: In this interim 12-month analysis of the ongoing global OLE study, patisiran appeared to maintain efficacy with an acceptable safety profile in patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy. Continued long-term follow-up will be important for the overall assessment of safety and efficacy with patisiran.info:eu-repo/semantics/publishedVersio

    Measurements of the Total and Differential Higgs Boson Production Cross Sections Combining the H??????? and H???ZZ*???4??? Decay Channels at s\sqrt{s}=8??????TeV with the ATLAS Detector

    No full text
    Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3~fb1^{-1} of pppp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8\sqrt{s} = 8 TeV and recorded by the ATLAS detector. Cross sections are obtained from measured HγγH \rightarrow \gamma \gamma and HZZ4H \rightarrow ZZ ^{*}\rightarrow 4\ell event yields, which are combined accounting for detector efficiencies, fiducial acceptances and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σppH=33.0±5.3(stat)±1.6(sys)pb\sigma_{pp \to H} = 33.0 \pm 5.3 \, ({\rm stat}) \pm 1.6 \, ({\rm sys}) \mathrm{pb}. The measurements are compared to state-of-the-art predictions.Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3  fb-1 of pp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8  TeV and recorded by the ATLAS detector. Cross sections are obtained from measured H→γγ and H→ZZ*→4ℓ event yields, which are combined accounting for detector efficiencies, fiducial acceptances, and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σpp→H=33.0±5.3 (stat)±1.6 (syst)  pb. The measurements are compared to state-of-the-art predictions.Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3 fb1^{-1} of pppp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8\sqrt{s} = 8 TeV and recorded by the ATLAS detector. Cross sections are obtained from measured HγγH \rightarrow \gamma \gamma and HZZ4H \rightarrow ZZ ^{*}\rightarrow 4\ell event yields, which are combined accounting for detector efficiencies, fiducial acceptances and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σppH=33.0±5.3(stat)±1.6(sys)pb\sigma_{pp \to H} = 33.0 \pm 5.3 \, ({\rm stat}) \pm 1.6 \, ({\rm sys}) \mathrm{pb}. The measurements are compared to state-of-the-art predictions
    corecore