644 research outputs found

    Space processes for extended low-G testing

    Get PDF
    Results of an investigation of verifying the capabilities of space processes in ground based experiments at low-g periods are presented. Limited time experiments were conducted with the processes. A valid representation of the complete process cycle was achieved at low-g periods ranging from 40 to 390 seconds. A minimum equipment inventory, is defined. A modular equipment design, adopted to assure low cost and high program flexibility, is presented as well as procedures and data established for the synthesis and definition of dedicated and mixed rocket payloads

    Extraterrestrial materials processing

    Get PDF
    The first year results of a multi-year study of processing extraterrestrial materials for use in space are summarized. Theoretically, there are potential major advantages to be derived from the use of such materials for future space endeavors. The types of known or postulated starting raw materials are described including silicate-rich mixed oxides on the Moon, some asteroids and Mars; free metals in some asteroids and in small quantities in the lunar soil; and probably volatiles like water and CO2 on Mars and some asteroids. Candidate processes for space materials are likely to be significantly different from their terrestrial counterparts largely because of: absence of atmosphere; lack of of readily available working fluids; low- or micro-gravity; no carbon-based fuels; readily available solar energy; and severe constraints on manned intervention. The extraction of metals and oxygen from lunar material by magma electrolysis or by vapor/ion phase separation appears practical

    Flexible materials technology

    Get PDF
    A survey of all presently defined or proposed large space systems indicated an ever increasing demand for flexible components and materials, primarily as a result of the widening disparity between the stowage space of launch vehicles and the size of advanced systems. Typical flexible components and material requirements were identified on the basis of recurrence and/or functional commonality. This was followed by the evaluation of candidate materials and the search for material capabilities which promise to satisfy the postulated requirements. Particular attention was placed on thin films, and on the requirements of deployable antennas. The assessment of the performance of specific materials was based primarily on the failure mode, derived from a detailed failure analysis. In view of extensive on going work on thermal and environmental degradation effects, prime emphasis was placed on the assessment of the performance loss by meteoroid damage. Quantitative data were generated for tension members and antenna reflector materials. A methodology was developed for the representation of the overall materials performance as related to systems service life. A number of promising new concepts for flexible materials were identified

    Preface

    Get PDF

    Laue centennial-100 years of X-rays diffraction Preface

    Get PDF
    ISSN:1433-7266ISSN:2194-4946ISSN:0044-2968ISSN:2196-710

    The growth of decagonal Al-Co-Ni single crystals as a function of chemical composition

    Get PDF
    Decaprismatic single crystals taken from a series of alloys of nominal compositions within Al65-77Co3-22Ni3-22 have been studied by means of x-ray diffraction techniques. The substitution of Co by Ni in increasing amounts changes the (pseudo)decagonal diffraction patterns drastically and indicates structural changes which range from a single-crystalline approximant via orientationally ordered nanodomain structures and quasiperiodic phases with different types of ordering phenomena, to a basic decagonal phase. A quantum phase diagram analysis shows a clear separation of the stability regions of the ternary systems described in this study and other decagonal phase

    Physicochemical materials research: Phase relations in the Al-Ir-Os system in the range up to 70 at.% Al

    Get PDF
    For alloys in the range Os-OsAl2-IrAl2.7-Ir, as-cast and annealed at 1400 °C (Os-OsAl-IrAl-Ir) and 1250°C (OsAl-OsAl2-IrAl2.7-IrAl), phase equilibria are studied by powder x-ray diffraction (PXRD), differential thermal analysis (DTA), scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDX). Between isostructural aluminides OsAl and IrAl there exists a continuous solid solution (Os,Ir)Al. Other unary and binary phases form terminal solid solutions: (Os), (Ir), (OsAl2), and (IrAl2.7

    Processes for space manufacturing - Definition of criteria for process feasibility and effectiveness Final report

    Get PDF
    Feasibility criteria and research and development program for manufacturing processes in orbital environment
    corecore