713 research outputs found

    Magnetoelastic nature of solid oxygen epsilon-phase structure

    Full text link
    For a long time a crystal structure of high-pressure epsilon-phase of solid oxygen was a mistery. Basing on the results of recent experiments that have solved this riddle we show that the magnetic and crystal structure of epsilon-phase can be explained by strong exchange interactions of antiferromagnetic nature. The singlet state implemented on quaters of O2 molecules has the minimal exchange energy if compared to other possible singlet states (dimers, trimers). Magnetoelastic forces that arise from the spatial dependence of the exchange integral give rise to transformation of 4(O2) rhombuses into the almost regular quadrates. Antiferromagnetic character of the exchange interactions stabilizes distortion of crystal lattice in epsilon-phase and impedes such a distortion in long-range alpha- and delta-phases.Comment: 11 pages, 4 figures, Changes: corrected typos, reference to the recent paper is adde

    The lesson of causal discovery algorithms for quantum correlations: Causal explanations of Bell-inequality violations require fine-tuning

    Full text link
    An active area of research in the fields of machine learning and statistics is the development of causal discovery algorithms, the purpose of which is to infer the causal relations that hold among a set of variables from the correlations that these exhibit. We apply some of these algorithms to the correlations that arise for entangled quantum systems. We show that they cannot distinguish correlations that satisfy Bell inequalities from correlations that violate Bell inequalities, and consequently that they cannot do justice to the challenges of explaining certain quantum correlations causally. Nonetheless, by adapting the conceptual tools of causal inference, we can show that any attempt to provide a causal explanation of nonsignalling correlations that violate a Bell inequality must contradict a core principle of these algorithms, namely, that an observed statistical independence between variables should not be explained by fine-tuning of the causal parameters. In particular, we demonstrate the need for such fine-tuning for most of the causal mechanisms that have been proposed to underlie Bell correlations, including superluminal causal influences, superdeterminism (that is, a denial of freedom of choice of settings), and retrocausal influences which do not introduce causal cycles.Comment: 29 pages, 28 figs. New in v2: a section presenting in detail our characterization of Bell's theorem as a contradiction arising from (i) the framework of causal models, (ii) the principle of no fine-tuning, and (iii) certain operational features of quantum theory; a section explaining why a denial of hidden variables affords even fewer opportunities for causal explanations of quantum correlation

    Existence of superposition solutions for pulse propagation in nonlinear resonant media

    Get PDF
    Existence of self-similar, superposed pulse-train solutions of the nonlinear, coupled Maxwell-Schr\"odinger equations, with the frequencies controlled by the oscillator strengths of the transitions, is established. Some of these excitations are specific to the resonant media, with energy levels in the configurations of Λ\Lambda and NN and arise because of the interference effects of cnoidal waves, as evidenced from some recently discovered identities involving the Jacobian elliptic functions. Interestingly, these excitations also admit a dual interpretation as single pulse-trains, with widely different amplitudes, which can lead to substantially different field intensities and population densities in different atomic levels.Comment: 11 Pages, 6 Figures, presentation changed and 3 figures adde

    Conserved Quantities in f(R)f(R) Gravity via Noether Symmetry

    Full text link
    This paper is devoted to investigate f(R)f(R) gravity using Noether symmetry approach. For this purpose, we consider Friedmann Robertson-Walker (FRW) universe and spherically symmetric spacetimes. The Noether symmetry generators are evaluated for some specific choice of f(R)f(R) models in the presence of gauge term. Further, we calculate the corresponding conserved quantities in each case. Moreover, the importance and stability criteria of these models are discussed.Comment: 14 pages, accepted for publication in Chin. Phys. Let

    Two-soliton solution for the derivative nonlinear Schr\"odinger equation with nonvanishing boundary conditions

    Full text link
    An explicit two-soliton solution for the derivative nonlinear Schr\"odinger equation with nonvanishing boundary conditions is derived, demonstrating details of interactions between two bright solitons, two dark solitons, as well as one bright soliton and one dark soliton. Shifts of soliton positions due to collisions are analytically obtained, which are irrespective of the bright or dark characters of the participating solitons.Comment: 11 pages, 4 figures. Phys. Lett. A 2006 (in press

    Two-Pulse Propagation in Media with Quantum-Mixed Ground States

    Full text link
    We examine fully coherent two-pulse propagation in a lambda-type medium, under two-photon resonance conditions and including inhomogeneous broadening. We examine both the effects of short pulse preparation and the effects of medium preparation. We contrast cases in which the two pulses have matched envelopes or not, and contrast cases in which ground state coherence is present or not. We find that an extended interpretation of the Area Theorem for single-pulse self-induced transparency (SIT) is able to unify two-pulse propagation scenarios, including some aspects of electromagnetically-induced transparency (EIT) and stimulated Raman scattering (SRS). We present numerical solutions of both three-level and adiabatically reduced two-level density matrix equations and Maxwell's equations, and show that many features of the solutions are quickly interpreted with the aid of analytic solutions that we also provide for restricted cases of pulse shapes and preparation of the medium. In the limit of large one-photon detuning, we show that the two-level equations commonly used are not reliable for pulse Areas in the 2Ï€\pi range, which allows puzzling features of previous numerical work to be understood.Comment: 28 pages, 7 figures. Replaced with version accepted in PR

    Completely integrable models of non-linear optics

    Full text link
    The models of the non-linear optics in which solitons were appeared are considered. These models are of paramount importance in studies of non-linear wave phenomena. The classical examples of phenomena of this kind are the self-focusing, self-induced transparency, and parametric interaction of three waves. At the present time there are a number of the theories based on completely integrable systems of equations, which are both generations of the original known models and new ones. The modified Korteweg-de Vries equation, the non- linear Schrodinger equation, the derivative non-linear Schrodinger equation, Sine-Gordon equation, the reduced Maxwell-Bloch equation, Hirota equation, the principal chiral field equations, and the equations of massive Thirring model are gradually putting together a list of soliton equations, which are usually to be found in non-linear optics theory.Comment: Latex, 17 pages, no figures, submitted to Pramana

    Theory of Pump Depletion and Spike Formation in Stimulated Raman Scattering

    Full text link
    By using the inverse spectral transform, the SRS equations are solved and the explicit output data is given for arbitrary laser pump and Stokes seed profiles injected on a vacuum of optical phonons. For long duration laser pulses, this solution is modified such as to take into account the damping rate of the optical phonon wave. This model is used to interprete the experiments of Druhl, Wenzel and Carlsten (Phys. Rev. Lett., (1983) vol. 51, p. 1171), in particular the creation of a spike of (anomalous) pump radiation. The related nonlinear Fourier spectrum does not contain discrete eigenvalue, hence this Raman spike is not a soliton.Comment: LaTex file, includes two figures in LaTex format, 9 page
    • …
    corecore