519 research outputs found

    Quantitative Analysis of Particulate Burden in Lung Tissue

    Get PDF
    Numerous methods have been used in the preparation and analysis of the particulate matter deposited in human lungs. Preparation techniques include those for particle isolation and for in situ analysis. Analytical techniques include bulk and particle-by-particle analysis. In this paper, a general discussion of many of these methods is presented along with examples of how two specific techniques have been used. In one study, individual particles from the lungs of 75 randomly selected autopsy cases were analyzed using an automated scanning electron microscopy (SEM)/ energy dispersive X-ray microanalysis (EDX) system. An average of 613 million particles, of exogenous origin, per gram of dry lung tissue were found, the major classes of particles being silica, talc, aluminum silicates, and rutile. In the second study, lungs from 50 randomly selected autopsy cases were analyzed using gravimetric and X-ray diffraction (XRD) analysis. The median total particulate material was 0.33 grams, for cases in which samples were prepared by high temperature ashing, and 0.41 grams, for those in which nitric acid digestion was used. The median amount of quartz for all cases, was 0.044 grams. Samples of eighteen of the 75 lungs previously analyzed by automated SEM/EDX were also analyzed using gravimetric and XRD analysis. A good correlation was seen between the results of the two procedures (r=0.91 for number of exogenous particles versus grams of particulate matter and r=0.97 for number of silica particles versus amount of quartz)

    Lung Particulate Burdens of Subjects from the Cincinnati, Ohio Urban Area

    Get PDF
    Because of the relatively small data base existing for lung particulate burdens of subjects with no overt pneumoconioses, the total exogenous lung particulate concentrations of 91 subjects from the Cincinnati, Ohio urban area were determined using an automated scanning electron microscope-energy dispersive x-ray analysis-image analysis system. Four of these subjects were foundry workers and had the highest exogenous particle concentrations seen in the 91 lungs, ranging from 1860 to 2990 x 106 particles per gram of dry lung (ppg). The average exogenous particle concentration for the remaining 87 subjects was 476 ± 380 x 106 ppg with a range of 71 to 1860 x 106 ppg. The median size of the exogenous particles in the 87 lungs was narrow, ranging from 0.37 to 1.02 µm. The geometric mean particle size over all 87 lungs was 0.60 µm with a geometric standard deviation (σg) of 2.35. The total exogenous particle levels were elevated for the male subjects compared to females (p=0.015), and were positively associated with age (p=0. 021). However, no correlation was seen between total particle concentration and race or smoking history

    QTc interval and resting heart rate as long-term predictors of mortality in type 1 and type 2 diabetes mellitus: a 23-year follow-up

    Get PDF
    Aims/hypothesis: We evaluated the association of QT interval corrected for heart rate (QTc) and resting heart rate (rHR) with mortality (all-causes, cardiovascular, cardiac, and ischaemic heart disease) in subjects with type 1 and type 2 diabetes. Methods: We followed 523 diabetic patients (221 with type 1 diabetes, 302 with type 2 diabetes) who were recruited between 1974 and 1977 in Switzerland for the WHO Multinational Study of Vascular Disease in Diabetes. Duration of follow-up was 22.6 ± 0.6years. Causes of death were obtained from death certificates, hospital records, post-mortem reports, and additional information given by treating physicians. Results: In subjects with type 1 diabetes QTc, but not rHR, was associated with an increased risk of: (1) all-cause mortality (hazard ratio [HR] 1.10 per 10ms increase in QTc, 95% CI 1.02-1.20, p = 0.011); (2) mortality due to cardiovascular (HR 1.15, 1.02-1.31, p = 0.024); and (3) mortality due to cardiac disease (HR 1.19, 1.03-1.36, p = 0.016). Findings for subjects with type 2 diabetes were different: rHR, but not QTc was associated with mortality due to: (1) all causes (HR 1.31 per 10 beats per min, 95% CI 1.15-1.50, p < 0.001); (2) cardiovascular disease (HR 1.43, 1.18-1.73, p < 0.001); (3) cardiac disease (HR 1.45, 1.19-1.76, p < 0.001); and (4) ischaemic heart disease (HR 1.52, 1.21-1.90, p < 0.001). Effect modification of QTc by type 1 and rHR by type 2 diabetes was statistically significant (p < 0.05 for all terms of interaction). Conclusions/interpretation: QTc is associated with long-term mortality in subjects with type 1 diabetes, whereas rHR is related to increased mortality risk in subjects with type 2 diabete

    Jet aircraft lubrication oil droplets as contrail ice-forming particles

    Get PDF
    The radiative characteristics and lifetimes of contrails are dependent on the number concentration of ice-forming particles in the engine exhaust plume. Aircraft gas turbine engines produce a variety of particles, yet it is understood that non-volatile black carbon aggregates are the dominant source of ice-forming particles with typical, fossil-derived jet fuel. However, with cleaner combustion technologies and the adoption of alternative fuels (e.g. hydrogen or synthetic aviation fuel), non-volatile black carbon particle emissions are expected to decrease or even be eliminated. Under these conditions, contrail properties will depend upon the concentration and characteristics of particles other than black carbon. Ultrafine (&lt; 100 nm) jet lubrication oil droplets constitute a significant fraction of the total organic particulate matter released by aircraft; however, their ability to form contrail ice crystals has hitherto been unexplored. In this work, we experimentally investigate the activation and freezing behaviour of lubrication oil droplets using an expansion chamber, assessing their potential as ice-forming particles. We generate lubrication oil droplets with a geometric mean mobility diameter of (100.9 ± 0.6) nm and show that these activate to form water droplets, which subsequently freeze when the temperature is below ∼ 235 K. We find that nucleation on lubrication oil droplets should be considered in future computational studies – particularly under soot-poor conditions – and that these studies would benefit from particle size distribution measurements at cruise altitude. Overall, taking steps to reduce lubrication oil number emissions would help reduce the climate impact of contrail cirrus.</p

    The high-resolution Global Aviation emissions Inventory based on ADS-B (GAIA) for 2019–2021

    Get PDF
    Aviation emissions that are dispersed into the Earth's atmosphere affect the climate and air pollution, with significant spatiotemporal variation owing to heterogeneous aircraft activity. In this paper, we use historical flight trajectories derived from Automatic Dependent Surveillance–Broadcast (ADS-B) telemetry and reanalysis weather data for 2019–2021 to develop the Global Aviation emissions Inventory based on ADS-B (GAIA). In 2019, 40.2 million flights collectively travelled 61 billion kilometres using 283 Tg of fuel, leading to CO2, NOX and non-volatile particulate matter (nvPM) mass and number emissions of 893 Tg, 4.49 Tg, 21.4 Gg and 2.8 × 1026 respectively. Global responses to COVID-19 led to reductions in the annual flight distance flown and CO2 and NOX emissions in 2020 (−43 %, −48 % and −50 % respectively relative to 2019) and 2021 (−31 %, −41 % and −43 % respectively), with significant regional variability. Short-haul flights with durations &lt; 3 h accounted for 83 % of all flights but only for 35 % of the 2019 CO2 emissions, while long-haul flights with durations &gt; 6 h (5 % of all flights) were responsible for 43 % of CO2 and 49 % of NOX emissions. Globally, the actual flight trajectories flown are, on average, ∼ 5 % greater than the great circle path between the origin and destination airports, but this varies by region and flight distance. An evaluation of 8705 unique flights between London and Singapore showed large variabilities in the flight trajectory profile, fuel consumption and emission indices. GAIA captures the spatiotemporal distribution of aviation activity and emissions and is provided for use in future studies to evaluate the negative externalities arising from global aviation.</p

    Fuel metabolism during exercise in euglycaemia and hyperglycaemia in patients with type 1 diabetes mellitus—a prospective single-blinded randomised crossover trial

    Get PDF
    Aims/hypothesis: We assessed systemic and local muscle fuel metabolism during aerobic exercise in patients with type 1 diabetes at euglycaemia and hyperglycaemia with identical insulin levels. Methods: This was a single-blinded randomised crossover study at a university diabetes unit in Switzerland. We studied seven physically active men with type 1 diabetes (mean ± SEM age 33.5 ± 2.4years, diabetes duration 20.1 ± 3.6years, HbA1c 6.7 ± 0.2% and peak oxygen uptake [ V.O2peak\mathop {\text{V}}\limits^{\text{.}} {\text{O}}_{2{\text{peak}}} ] 50.3 ± 4.5ml min−1 kg−1). Men were studied twice while cycling for 120min at 55 to 60% of V.O2peak\mathop {\text{V}}\limits^{\text{.}} {\text{O}}_{{\text{2peak}}} , with a blood glucose level randomly set either at 5 or 11mmol/l and identical insulinaemia. The participants were blinded to the glycaemic level; allocation concealment was by opaque, sealed envelopes. Magnetic resonance spectroscopy was used to quantify intramyocellular glycogen and lipids before and after exercise. Indirect calorimetry and measurement of stable isotopes and counter-regulatory hormones complemented the assessment of local and systemic fuel metabolism. Results: The contribution of lipid oxidation to overall energy metabolism was higher in euglycaemia than in hyperglycaemia (49.4 ± 4.8 vs 30.6 ± 4.2%; p < 0.05). Carbohydrate oxidation accounted for 48.2 ± 4.7 and 66.6 ± 4.2% of total energy expenditure in euglycaemia and hyperglycaemia, respectively (p < 0.05). The level of intramyocellular glycogen before exercise was higher in hyperglycaemia than in euglycaemia (3.4 ± 0.3 vs 2.7 ± 0.2 arbitrary units [AU]; p < 0.05). Absolute glycogen consumption tended to be higher in hyperglycaemia than in euglycaemia (1.3 ± 0.3 vs 0.9 ± 0.1 AU). Cortisol and growth hormone increased more strongly in euglycaemia than in hyperglycaemia (levels at the end of exercise 634 ± 52 vs 501 ± 32nmol/l and 15.5 ± 4.5 vs 7.4 ± 2.0ng/ml, respectively; p < 0.05). Conclusions/interpretation: Substrate oxidation in type 1 diabetic patients performing aerobic exercise in euglycaemia is similar to that in healthy individuals revealing a shift towards lipid oxidation during exercise. In hyperglycaemia fuel metabolism in these patients is dominated by carbohydrate oxidation. Intramyocellular glycogen was not spared in hyperglycaemia. Trial registration: ClinicalTrials.Gov NCT00325559 Funding: This study was supported by unrestricted grants from the Oetliker-Stiftung für Physiologie, from the Swiss Diabetes Foundation, from NovoNordisk, Switzerland, and from the Swiss National Science Foundatio

    The PRK/Rubisco shunt strongly influences Arabidopsis seed metabolism and oil accumulation, affecting more than carbon recycling

    Get PDF
    The carbon efficiency of storage lipid biosynthesis from imported sucrose in green Brassicaceae seeds is proposed to be enhanced by the PRK/Rubisco shunt, in which ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) acts outside the context of the Calvin–Benson–Bassham cycle to recycle CO2 molecules released during fatty acid synthesis. This pathway utilizes metabolites generated by the nonoxidative steps of the pentose phosphate pathway. Photosynthesis provides energy for reactions such as the phosphorylation of ribulose 5-phosphate by phosphoribulokinase (PRK). Here, we show that loss of PRK in Arabidopsis thaliana (Arabidopsis) blocks photoautotrophic growth and is seedling-lethal. However, seeds containing prk embryos develop normally, allowing us to use genetics to assess the importance of the PRK/Rubisco shunt. Compared with nonmutant siblings, prk embryos produce one-third less lipids—a greater reduction than expected from simply blocking the proposed PRK/Rubisco shunt. However, developing prk seeds are also chlorotic and have elevated starch contents compared with their siblings, indicative of secondary effects. Overexpressing PRK did not increase embryo lipid content, but metabolite profiling suggested that Rubisco activity becomes limiting. Overall, our findings show that the PRK/Rubisco shunt is tightly integrated into the carbon metabolism of green Arabidopsis seeds, and that its manipulation affects seed glycolysis, starch metabolism, and photosynthesis.ISSN:1040-4651ISSN:1531-298XISSN:1532-298

    Closed-Loop Insulin Delivery for Glycemic Control in Noncritical Care.

    Get PDF
    BACKGROUND: In patients with diabetes, hospitalization can complicate the achievement of recommended glycemic targets. There is increasing evidence that a closed-loop delivery system (artificial pancreas) can improve glucose control in patients with type 1 diabetes. We wanted to investigate whether a closed-loop system could also improve glycemic control in patients with type 2 diabetes who were receiving noncritical care. METHODS: In this randomized, open-label trial conducted on general wards in two tertiary hospitals located in the United Kingdom and Switzerland, we assigned 136 adults with type 2 diabetes who required subcutaneous insulin therapy to receive either closed-loop insulin delivery (70 patients) or conventional subcutaneous insulin therapy, according to local clinical practice (66 patients). The primary end point was the percentage of time that the sensor glucose measurement was within the target range of 100 to 180 mg per deciliter (5.6 to 10.0 mmol per liter) for up to 15 days or until hospital discharge. RESULTS: The mean (±SD) percentage of time that the sensor glucose measurement was in the target range was 65.8±16.8% in the closed-loop group and 41.5±16.9% in the control group, a difference of 24.3±2.9 percentage points (95% confidence interval [CI], 18.6 to 30.0; P<0.001); values above the target range were found in 23.6±16.6% and 49.5±22.8% of the patients, respectively, a difference of 25.9±3.4 percentage points (95% CI, 19.2 to 32.7; P<0.001). The mean glucose level was 154 mg per deciliter (8.5 mmol per liter) in the closed-loop group and 188 mg per deciliter (10.4 mmol per liter) in the control group (P<0.001). There was no significant between-group difference in the duration of hypoglycemia (as defined by a sensor glucose measurement of <54 mg per deciliter; P=0.80) or in the amount of insulin that was delivered (median dose, 44.4 U and 40.2 U, respectively; P=0.50). No episode of severe hypoglycemia or clinically significant hyperglycemia with ketonemia occurred in either trial group. CONCLUSIONS: Among inpatients with type 2 diabetes receiving noncritical care, the use of an automated, closed-loop insulin-delivery system resulted in significantly better glycemic control than conventional subcutaneous insulin therapy, without a higher risk of hypoglycemia. (Funded by Diabetes UK and others; ClinicalTrials.gov number, NCT01774565 .)

    Helminth products bypass the need for TSLP in Th2 immune responses by directly modulating dendritic cell function

    Get PDF
    Thymic stromal lymphopoietin (TSLP) is an interleukin (IL)-7-like cytokine, mainly expressed by epithelial cells, and key to the development of allergic responses. The well-documented involvement of TSLP in allergy has led to the conviction that TSLP promotes the development of inflammatory Th2 cell responses. However, we now report that the interaction of TSLP with its receptor (TSLPR) has no functional impact on the development of protective Th2 immune responses after infection with 2 helminth pathogens, Heligmosomoides polygyrus and Nippostrongylus brasiliensis. Mice deficient in the TSLP binding chain of the TSLPR (TSLPR(-/-)) exhibited normal Th2 cell differentiation, protective immunity and memory responses against these two distinct rodent helminths. In contrast TSLP was found to be necessary for the development of protective Th2 responses upon infection with the helminth Trichuris muris (T. muris). TSLP inhibited IL-12p40 production in response to T. muris infection, and treatment of TSLPR(-/-) animals with neutralizing anti-IL-12p40 monoclonal antibody (mAb) was able to reverse susceptibility and attenuate IFN-gamma production. We additionally demonstrated that excretory-secretory (ES) products from H. polygyrus and N. brasiliensis, but not T. muris, were capable of directly suppressing dendritic cell (DC) production of IL-12p40, thus bypassing the need for TSLP. Taken together, our data show that the primary function of TSLP is to directly suppress IL-12 secretion, thus supporting Th2 immune responses
    • …
    corecore