973 research outputs found

    Time-Series BVI Photometry for the Globular Cluster NGC 6981 (M72)

    Full text link
    We present new BVI photometry of the globular cluster NGC 6981 (M72), based mostly on ground-based CCD archive images. We present a new color-magnitude diagram (CMD) that reaches almost four magnitudes below the turn-off level. We performed new derivations of metallicity and morphological parameters of the evolved sequences, in good agreement with previous authors, obtaining a value of [Fe/H] ~ -1.50 in the new UVES scale. We also identify the cluster's blue straggler population. Comparing the radial distribution of these stars with the red giant branch population, we find that the blue stragglers are more centrally concentrated, as found in previous studies of blue stragglers in globular clusters. Taking advantage of the large field of view covered by our study, we analyzed the surface density profile of the cluster, finding extratidal main sequence stars out to r ~ 14.1 arcmin or about twice the tidal radius. We speculate that this may be due to tidal disruption in the course of M72's orbit, in which case tidal tails associated with the cluster may exist. We also take a fresh look at the variable stars in the cluster, recovering all previous known variables, including three SX Phoenicis stars, and adding three previously unknown RR Lyrae (1 c-type and 2 ab-type) to the total census. Finally, comparing our CMD with unpublished data for M3 (NGC 5272), a cluster with similar metallicity and horizontal branch morphology, we found that both objects are essentially coeval.Comment: Accepted for publication in A

    Deep HST Imaging in NGC 6397: Stellar Dynamics

    Full text link
    Multi-epoch observations with ACS on HST provide a unique and comprehensive probe of stellar dynamics within NGC 6397. We are able to confront analytic models of the globular cluster with the observed stellar proper motions. The measured proper motions probe well along the main sequence from 0.8 to below 0.1 M⊙_\odot as well as white dwarfs younger than one gigayear. The observed field lies just beyond the half-light radius where standard models of globular cluster dynamics (e.g. based on a lowered Maxwellian phase-space distribution) make very robust predictions for the stellar proper motions as a function of mass. The observed proper motions show no evidence for anisotropy in the velocity distribution; furthermore, the observations agree in detail with a straightforward model of the stellar distribution function. We do not find any evidence that the young white dwarfs have received a natal kick in contradiction with earlier results. Using the observed proper motions of the main-sequence stars, we obtain a kinematic estimate of the distance to NGC 6397 of 2.2−0.7+0.52.2^{+0.5}_{-0.7} kpc and a mass of the cluster of 1.1±0.1×105M⊙1.1 \pm 0.1 \times 10^5 \mathrm{M}_\odot at the photometric distance of 2.53 kpc. One of the main-sequence stars appears to travel on a trajectory that will escape the cluster, yielding an estimate of the evaporation timescale, over which the number of stars in the cluster decreases by a factor of e, of about 3 Gyr. The proper motions of the youngest white dwarfs appear to resemble those of the most massive main-sequence stars, providing the first direct constraint on the relaxation time of the stars in a globular cluster of greater than or about 0.7 Gyr.Comment: 25 pages, 20 figures, accepted for publication in Astrophysical Journa

    NGC 2419, M92, and the Age Gradient in the Galactic Halo

    Get PDF
    The WFPC2 camera on HST has been used to obtain deep main sequence photometry of the low-metallicity ([Fe/H]=-2.14), outer-halo globular cluster NGC 2419. A differential fit of the NGC 2419 CMD to that of the similarly metal-poor \ standard cluster M92 shows that they have virtually identical principal sequences and thus the same age to well within 1 Gyr. Since other low-metallicity clusters throughout the Milky Way halo have this same age to within the 1-Gyr precision of the differential age technique, we conclude that the earliest star (or globular cluster) formation began at essentially the same time everywhere in the Galactic halo throughout a region now almost 200 kpc in diameter. Thus for the metal-poorest clusters in the halo there is no detectable age gradient with Galactocentric distance. To estimate the absolute age of NGC 2419 and M92, we fit newly computed isochrones transformed through model-atmosphere calculations to the (M_V,V-I) plane, with assumed distance scales that represent the range currently debated in the literature. Unconstrained isochrone fits give M_V(RR) = 0.55 \pm 0.06 and a resulting age of 14 to 15 Gyr. Incorporating the full effects of helium diffusion would further reduce this estimate by about 1 Gyr. A distance scale as bright as M_V(RR) = 0.15 for [Fe/H] = -2, as has recently been reported, would leave several serious problems which have no obvious solution in the context of current stellar models.Comment: 32 pages, aastex, 9 postscript figures; accepted for publication in AJ, September 1997. Also available by e-mail from [email protected]

    The Gradients in the 47 Tuc Red Giant Branch Bump and Horizontal Branch are Consistent With a Centrally-Concentrated, Helium-Enriched Second Stellar Generation

    Full text link
    We combine ground and space-based photometry of the Galactic globular cluster 47 Tuc to measure four independent lines of evidence for a helium gradient in the cluster, whereby stars in the cluster outskirts would have a lower initial helium abundance than stars in and near the cluster core. First and second, we show that the red giant branch bump (RGBB) stars exhibit gradients in their number counts and brightness. With increased separation from the cluster center, they become more numerous relative to the other red giant (RG) stars. They also become fainter. For our third and fourth lines of evidence, we show that the horizontal branch (HB) of the cluster becomes both fainter and redder for sightlines farther from the cluster center. These four results are respectively detected at the 2.3σ\sigma, 3.6σ\sigma, 7.7σ\sigma and 4.1σ\sigma levels. Each of these independent lines of evidence is found to be significant in the cluster-outskirts; closer in, the data are more compatible with uniform mixing. Our radial profile is qualitatively consistent with but quantitatively tighter than previous results based on CN absorption. These observations are qualitatively consistent with a scenario wherein a second generation of stars with modestly enhanced helium and CNO abundance formed deep within the gravitational potential of a cluster of previous generation stars having more canonical abundances.Comment: 20 pages, 6 figures, 1 table, submitted to The Astrophysical Journa

    An Age Difference of 2 Gyr between a Metal-Rich and a Metal-Poor Globular Cluster

    Full text link
    Globular clusters trace the formation history of the spheroidal components of both our Galaxy and others, which represent the bulk of star formation over the history of the universe. They also exhibit a range of metallicities, with metal-poor clusters dominating the stellar halo of the Galaxy, and higher metallicity clusters found within the inner Galaxy, associated with the stellar bulge, or the thick disk. Age differences between these clusters can indicate the sequence in which the components of the Galaxy formed, and in particular which clusters were formed outside the Galaxy and later swallowed along with their original host galaxies, and which were formed in situ. Here we present an age determination of the metal-rich globular cluster 47 Tucanae by fitting the properties of the cluster white dwarf population, which implies an absolute age of 9.9 (0.7) Gyr at 95% confidence. This is about 2.0 Gyr younger than inferred for the metal-poor cluster NGC 6397 from the same models, and provides quantitative evidence that metal-rich clusters like 47 Tucanae formed later than the metal-poor halo clusters like NGC 6397.Comment: Main Article: 10 pages, 4 figures; Supplementary Info 15 pages, 5 figures. Nature, Aug 1, 201

    Optimization of Turbine Rim Seals

    Get PDF
    Experiments are being conducted to gain an understanding of the physics of rim scale cavity ingestion in a turbine stage with the high-work, single-stage characteristics envisioned for Advanced Subsonic Transport (AST) aircraft gas turbine engines fo the early 21st century. Initial experimental measurements to be presented include time-averaged turbine rim cavity and main gas path static pressure measurements for rim seal coolant to main gas path mass flow ratios between 0 and 0.02. The ultimate objective of this work is develop improved rim seal design concepts for use in modern high-work, single sage turbines n order to minimize the use of secondary coolant flow. Toward this objective the time averaged and unsteady data to be obtained in these experiments will be used to 1) Quantify the impact of the rim cavity cooling air on the ingestion process. 2) Quantify the film cooling benefits of the rim cavity purge flow in the main gas path. 3) Quantify the impact of the cooling air on turbine efficiency. 4) Develop/evaluate both 3D CFD and analytical models of the ingestion/cooling process

    Advanced high temperature static strain sensor development

    Get PDF
    An examination was made into various techniques to be used to measure static strain in gas turbine liners at temperatures up to 1150 K (1600 F). The methods evaluated included thin film and wire resistive devices, optical fibers, surface acoustic waves, the laser speckle technique with a heterodyne readout, optical surface image and reflective approaches and capacitive devices. A preliminary experimental program to develop a thin film capacitive device was dropped because calculations showed that it would be too sensitive to thermal gradients. In a final evaluation program, the laser speckle technique appeared to work well up to 1150 K when it was used through a relatively stagnant air path. The surface guided acoustic wave approach appeared to be interesting but to require too much development effort for the funds available. Efforts to develop a FeCrAl resistive strain gage system were only partially successful and this part of the effort was finally reduced to a characterization study of the properties of the 25 micron diameter FeCrAl (Kanthal A-1) wire. It was concluded that this particular alloy was not suitable for use as the resistive element in a strain gage above about 1000 K
    • …
    corecore