123 research outputs found

    Searching for intra-cloud positive leaders in VHF

    Get PDF
    We have used the LOw-Frequency ARray (LOFAR) to search for the growing tip of an intra-cloud (IC) positive leader. Even with our most sensitive beamforming method, where we coherently add the signals of about 170 antenna pairs, we were not able to detect any emission from the tip. Instead, we put constraints on the emissivity of very-high frequency (VHF) radiation from the tip at 0.5 pJ/MHz at 60 MHz, integrated over 100 ns. The limit is independent on whether this emission is in the form of short pulses or continuously radiating. The non-observation of VHF radiation from intra-cloud positive leaders implies that they proceed in an extremely gradual process, which is in sharp contrast with the observations of other parts of a lightning discharge.</p

    Ultra-Slow Discharges That Precede Lightning Initiation

    Get PDF
    We report on ultra-slowly propagating discharge events with speeds in the range 1-13 km/s, much lower than any known lightning process. The propagation speeds of these discharges are orders of magnitude slower than leader or streamer speeds, but faster than the ion drift speed. For one particular event, a lightning leader forms about 40 ms later within 50 m of the discharge, likely within the same high field region. A second slow event forms 9 ms prior to the initiation, and leads into the negative leader. Most slow events appear to not be directly involved with lightning initiation. This suggests that the classic streamer cascade model of initiation is not always a definitive process. In this work we describe these discharge events displaying unique behavior, their relation to common lightning discharges, and their implications for lightning initiation

    Small-Scale Discharges Observed Near the Top of a Thunderstorm

    Get PDF
    We have used the LOw-Frequency ARray (LOFAR) to image a few lightning flashes during a particularly severe thunderstorm. The images show an exceptional amount of VHF activity at altitudes above 10 km. Much of this is in the form of small-scale discharges, not exceeding a few hundred meter, occurring seemingly randomly around the centers of active storm cells. To emphasize the incidental nature of these small-scale discharges or sparks we refer to them as “sparkles.” A detailed investigation shows evidence that these sparkles are indicative of positive leader channels and that they are equivalent to the needle activity seen around positive leader tracks at lower altitudes.</p

    Interferometric imaging of intensely radiating negative leaders

    Get PDF
    The common phenomenon of lightning still harbors many secrets and only recently a new propagation mode was observed for negative leaders. While propagating in this "intensely radiating negative leader"(IRNL) mode a negative leader emits 100 times more very-high frequency (VHF) and broadband radiation than a more normal negative leader. We have reported that this mode occurs soon after initiation of all lightning flashes we have mapped as well as sometimes long thereafter. Because of the profuse emission of VHF the leader structure is very difficult to image. In this work we report on measurements made with the LOFAR radio telescope, an instrument primarily built for radio-astronomy observations. For this reason, as part of the present work, we have refined our time resolved interferometric 3-dimensional (TRI-D) imaging to take into account the antenna function. The images from the TRI-D imager show that during an IRNL there is an ionization front with a diameter in excess of 500 m where strong corona bursts occur. This is very different from what is seen for a normal negative leader where the corona bursts happen at the tip, an area of typically 10 m in diameter. The observed massive ionization wave supports the idea that this mode is indicative of a dense charge pocket

    Interferometric imaging of intensely radiating negative leaders

    Get PDF
    The common phenomenon of lightning still harbors many secrets and only recently a new propagation mode was observed for negative leaders. While propagating in this `Intensely Radiating Negative Leader\u27 (IRNL) mode a negative leader emits 100 times more very-high frequency (VHF) and broadband radiation than a more normal negative leader. We have reported that this mode occurs soon after initiation of all lightning flashes we have mapped as well as sometimes long thereafter. Because of the profuse emission of VHF the leader structure is very difficult to image. In this work we report on measurements made with the LOFAR radio telescope, an instrument primarily built for radio-astronomy observations. For this reason, as part of the present work, we have refined our time resolved interferometric 3-Dimensional (TRI-D) imaging to take into account the antenna function. The images from the TRI-D imager show that during an IRNL there is an ionization front with a diameter in excess of 500~m where strong corona bursts occur. This is very different from what is seen for a normal negative leader where the corona bursts happen at the tip, an area of typically 10~m in diameter. The observed massive ionization wave supports the idea that this mode is indicative of a dense charge pocket

    Distinguishing features of high altitude negative leaders as observed with LOFAR

    Get PDF
    We present high resolution observations of negative leaders at high altitude using the LOFAR radio telescope. We show that the structure of negative leaders at high altitude (altitudes larger than 7 km) differs in several respects from that of negative leaders at lower altitudes. In particular, the High Altitude Negative Leaders (HANLs) show very distinct steps of a few hundred meters, stepping times of the order of a few milliseconds and a filamentary structure that extends outward over several hundreds of meters; as opposed to lower altitude (≲ 5 km) leaders, which have stepping times and distances around 0.01 ms and 10 m. Similar to lower altitude leaders, high altitude leaders emit copious VHF radiation from their propagating tip and have propagation velocities of the order of 105 m/s. Corona-flash like bursts can be distinguished when zooming in to meter and nanosecond scales

    The Initial Stage of Cloud Lightning Imaged in High Resolution

    Get PDF
    With LOFAR we have been able to image the development of lightning flashes with meter-scale accuracy and unprecedented detail. We discuss the primary steps behind our most recent lightning mapping method. To demonstrate the capabilities of our technique we show and interpret images of the first few milliseconds of two intra-cloud flashes. In all our flashes the negative leaders propagate in the charge layer below the main negative charge. Among several interesting features we show that in about 2~ms after initiation the Primary Initial Leader triggers the formation of a multitude (more than ten) negative leaders in a rather confined area of the atmosphere. From these only one or two continue to propagate after about 30~ms to extend over kilometers horizontally while another may propagate back to the initiation point. We also show that normal negative leaders can transition into an initial-leader like state, potentially in the presence of strong electric fields. In addition, we show some initial breakdown pulses that occurred during the primary initial leader, and even during two "secondary" initial leaders that developed out of stepped leaders.Comment: Submitted to Journal of geophysics research: Atmosphere
    • …
    corecore