193 research outputs found
Elliptic operators in even subspaces
In the paper we consider the theory of elliptic operators acting in subspaces
defined by pseudodifferential projections. This theory on closed manifolds is
connected with the theory of boundary value problems for operators violating
Atiyah-Bott condition. We prove an index formula for elliptic operators in
subspaces defined by even projections on odd-dimensional manifolds and for
boundary value problems, generalizing the classical result of Atiyah-Bott.
Besides a topological contribution of Atiyah-Singer type, the index formulas
contain an invariant of subspaces defined by even projections. This homotopy
invariant can be expressed in terms of the eta-invariant. The results also shed
new light on P.Gilkey's work on eta-invariants of even-order operators.Comment: 39 pages, 2 figure
Elliptic operators in odd subspaces
An elliptic theory is constructed for operators acting in subspaces defined
via odd pseudodifferential projections. Subspaces of this type arise as
Calderon subspaces for first order elliptic differential operators on manifolds
with boundary, or as spectral subspaces for self-adjoint elliptic differential
operators of odd order. Index formulas are obtained for operators in odd
subspaces on closed manifolds and for general boundary value problems. We prove
that the eta-invariant of operators of odd order on even-dimesional manifolds
is a dyadic rational number.Comment: 27 page
Laplacian Growth, Elliptic Growth, and Singularities of the Schwarz Potential
The Schwarz function has played an elegant role in understanding and in
generating new examples of exact solutions to the Laplacian growth (or "Hele-
Shaw") problem in the plane. The guiding principle in this connection is the
fact that "non-physical" singularities in the "oil domain" of the Schwarz
function are stationary, and the "physical" singularities obey simple dynamics.
We give an elementary proof that the same holds in any number of dimensions for
the Schwarz potential, introduced by D. Khavinson and H. S. Shapiro [17]
(1989). A generalization is also given for the so-called "elliptic growth"
problem by defining a generalized Schwarz potential. New exact solutions are
constructed, and we solve inverse problems of describing the driving
singularities of a given flow. We demonstrate, by example, how \mathbb{C}^n -
techniques can be used to locate the singularity set of the Schwarz potential.
One of our methods is to prolong available local extension theorems by
constructing "globalizing families". We make three conjectures in potential
theory relating to our investigation
Uniformization and an Index Theorem for Elliptic Operators Associated with Diffeomorphisms of a Manifold
We consider the index problem for a wide class of nonlocal elliptic operators
on a smooth closed manifold, namely differential operators with shifts induced
by the action of an isometric diffeomorphism. The key to the solution is the
method of uniformization: We assign to the nonlocal problem a
pseudodifferential operator with the same index, acting in sections of an
infinite-dimensional vector bundle on a compact manifold. We then determine the
index in terms of topological invariants of the symbol, using the Atiyah-Singer
index theorem.Comment: 16 pages, no figure
Noncommutative elliptic theory. Examples
We study differential operators, whose coefficients define noncommutative
algebras. As algebra of coefficients, we consider crossed products,
corresponding to action of a discrete group on a smooth manifold. We give index
formulas for Euler, signature and Dirac operators twisted by projections over
the crossed product. Index of Connes operators on the noncommutative torus is
computed.Comment: 23 pages, 1 figur
Topological Expansion and Exponential Asymptotics in 1D Quantum Mechanics
Borel summable semiclassical expansions in 1D quantum mechanics are
considered. These are the Borel summable expansions of fundamental solutions
and of quantities constructed with their help. An expansion, called
topological,is constructed for the corresponding Borel functions. Its main
property is to order the singularity structure of the Borel plane in a
hierarchical way by an increasing complexity of this structure starting from
the analytic one. This allows us to study the Borel plane singularity structure
in a systematic way. Examples of such structures are considered for linear,
harmonic and anharmonic potentials. Together with the best approximation
provided by the semiclassical series the exponentially small contribution
completing the approximation are considered. A natural method of constructing
such an exponential asymptotics relied on the Borel plane singularity
structures provided by the topological expansion is developed. The method is
used to form the semiclassical series including exponential contributions for
the energy levels of the anharmonic oscillator.Comment: 46 pages, 22 EPS figure
Asymptotic Improvement of Resummation and Perturbative Predictions in Quantum Field Theory
The improvement of resummation algorithms for divergent perturbative
expansions in quantum field theory by asymptotic information about perturbative
coefficients is investigated. Various asymptotically optimized resummation
prescriptions are considered. The improvement of perturbative predictions
beyond the reexpansion of rational approximants is discussed.Comment: 21 pages, LaTeX, 3 tables; title shortened; typographical errors
corrected; minor changes of style; 2 references adde
Thirty-five years of computerized cognitive assessment of aging — Where are we now?
Over the past 35 years, the proliferation of technology and the advent of the internet have resulted in many reliable and easy to administer batteries for assessing cognitive function. These approaches have great potential for affecting how the health care system monitors and screens for cognitive changes in the aging population. Here, we review these new technologies with a specific emphasis on what they offer over and above traditional ‘paper-and-pencil’ approaches to assessing cognitive function. Key advantages include fully automated administration and scoring, the interpretation of individual scores within the context of thousands of normative data points, the inclusion of ‘meaningful change’ and ‘validity’ indices based on these large norms, more efficient testing, increased sensitivity, and the possibility of characterising cognition in samples drawn from the general population that may contain hundreds of thousands of test scores. The relationship between these new computerized platforms and existing (and commonly used) paper-and-pencil tests is explored, with a particular emphasis on why computerized tests are particularly advantageous for assessing the cognitive changes associated with aging
Exceptional responders in conservation.
Conservation operates within complex systems with incomplete knowledge of the system and the interventions utilized. This frequently results in the inability to find generally applicable methods to alleviate threats to Earth's vanishing wildlife. One approach used in medicine and the social sciences has been to develop a deeper understanding of positive outliers. Where such outliers share similar characteristics, they may be considered exceptional responders. We devised a 4-step framework for identifying exceptional responders in conservation: identification of the study system, identification of the response structure, identification of the threshold for exceptionalism, and identification of commonalities among outliers. Evaluation of exceptional responders provides additional information that is often ignored in randomized controlled trials and before-after control-intervention experiments. Interrogating the contextual factors that contribute to an exceptional outcome allow exceptional responders to become valuable pieces of information leading to unexpected discoveries and novel hypotheses
- …
