57 research outputs found

    Morphological, genetic and molecular desciption of Pristionchus pacificus

    Get PDF
    Description est donnée d'une nouvelle espèce hermaphrodite de nématode libre, #Pristionchus pacificus sp. n. (#Neodiplogastridae) qui pourra être utilisée pour des études de génétique, de développement et de biologie moléculaire. #P. pacificus sp. n. possède six chromosomes, un cycle de reproduction de trois jours et s'élève facilement. Quarante-huit mutations morphologiques sont décrites, ce qui indique l'accessibilité à l'étude génétique. Des études moléculaires ont débuté par l'établissement de banques d'ADN génomique et d'ADNc et par le clonage de l'homologue du gène let-60 ras de #Caenorhabditis elegans. (Résumé d'auteur

    Perspectives on tracking data reuse across biodata resources.

    Get PDF
    Data reuse is a common and vital practice in molecular biology and enables the knowledge gathered over recent decades to drive discovery and innovation in the life sciences. Much of this knowledge has been collated into molecular biology databases, such as UniProtKB, and these resources derive enormous value from sharing data among themselves. However, quantifying and documenting this kind of data reuse remains a challenge. The article reports on a one-day virtual workshop hosted by the UniProt Consortium in March 2023, attended by representatives from biodata resources, experts in data management, and NIH program managers. Workshop discussions focused on strategies for tracking data reuse, best practices for reusing data, and the challenges associated with data reuse and tracking. Surveys and discussions showed that data reuse is widespread, but critical information for reproducibility is sometimes lacking. Challenges include costs of tracking data reuse, tensions between tracking data and open sharing, restrictive licenses, and difficulties in tracking commercial data use. Recommendations that emerged from the discussion include: development of standardized formats for documenting data reuse, education about the obstacles posed by restrictive licenses, and continued recognition by funding agencies that data management is a critical activity that requires dedicated resources. Summaries of survey results are available at: https://docs.google.com/forms/d/1j-VU2ifEKb9C-sW6l3ATB79dgHdRk5v_lESv2hawnso/viewanalytics (survey of data providers) and https://docs.google.com/forms/d/18WbJFutUd7qiZoEzbOytFYXSfWFT61hVce0vjvIwIjk/viewanalytics (survey of users)

    Cluster Density and the IMF

    Full text link
    Observed variations in the IMF are reviewed with an emphasis on environmental density. The remote field IMF studied in the LMC by several authors is clearly steeper than most cluster IMFs, which have slopes close to the Salpeter value. Local field regions of star formation, like Taurus, may have relatively steep IMFs too. Very dense and massive clusters, like super star clusters, could have flatter IMFs, or inner-truncated IMFs. We propose that these variations are the result of three distinct processes during star formation that affect the mass function in different ways depending on mass range. At solar to intermediate stellar masses, gas processes involving thermal pressure and supersonic turbulence determine the basic scale for stellar mass, starting with the observed pre-stellar condensations, and they define the mass function from several tenths to several solar masses. Brown dwarfs require extraordinarily high pressures for fragmentation from the gas, and presumably form inside the pre-stellar condensations during mutual collisions, secondary fragmentations, or in disks. High mass stars form in excess of the numbers expected from pure turbulent fragmentation as pre-stellar condensations coalesce and accrete with an enhanced gravitational cross section. Variations in the interaction rate, interaction strength, and accretion rate among the primary fragments formed by turbulence lead to variations in the relative proportions of brown dwarfs, solar to intermediate mass stars, and high mass stars.Comment: 14 pages, 3 figures, to be published in ``IMF@50: A Fest-Colloquium in honor of Edwin E. Salpeter,'' held at Abbazia di Spineto, Siena, Italy, May 16-20, 2004. Kluwer Academic Publishers; edited by E. Corbelli, F. Palla, and H. Zinnecke

    Physical Processes in Star Formation

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio

    Morphologically defined sub-stages of C. Elegans vulval development in the fourth larval stage

    No full text
    10.1186/s12861-015-0076-7BMC Developmental Biology1512

    Morphological, genetic and molecular desciption of Pristionchus pacificus

    No full text
    Description est donnée d'une nouvelle espèce hermaphrodite de nématode libre, #Pristionchus pacificus sp. n. (#Neodiplogastridae) qui pourra être utilisée pour des études de génétique, de développement et de biologie moléculaire. #P. pacificus sp. n. possède six chromosomes, un cycle de reproduction de trois jours et s'élève facilement. Quarante-huit mutations morphologiques sont décrites, ce qui indique l'accessibilité à l'étude génétique. Des études moléculaires ont débuté par l'établissement de banques d'ADN génomique et d'ADNc et par le clonage de l'homologue du gène let-60 ras de #Caenorhabditis elegans. (Résumé d'auteur

    Extrasynaptic acetylcholine signaling through a muscarinic receptor regulates cell migration.

    No full text
    Acetylcholine (ACh) promotes various cell migrations in vitro, but there are few investigations into this nonsynaptic role of ACh signaling in vivo. Here we investigate the function of a muscarinic receptor on an epithelial cell migration in Caenorhabditis elegans We show that the migratory gonad leader cell, the linker cell (LC), uses an M1/M3/M5-like muscarinic ACh receptor GAR-3 to receive extrasynaptic ACh signaling from cholinergic neurons for its migration. Either the loss of the GAR-3 receptor in the LC or the inhibition of ACh release from cholinergic neurons resulted in migratory path defects. The overactivation of the GAR-3 muscarinic receptor caused the LC to reverse its orientation through its downstream effectors Gαq/egl-30, PLCβ/egl-8, and TRIO/unc-73 This reversal response only occurred in the fourth larval stage, which corresponds to the developmental time when the GAR-3::yellow fluorescent protein receptor in the membrane relocalizes from a uniform to an asymmetric distribution. These findings suggest a role for the GAR-3 muscarinic receptor in determining the direction of LC migration

    Combining State-Based and Scenario-Based Approaches in Modeling Biological Systems

    No full text
    corecore