441 research outputs found

    Morphometricity as a measure of the neuroanatomical signature of a trait

    Get PDF
    Complex physiological and behavioral traits, including neurological and psychiatric disorders, often associate with distributed anatomical variation. This paper introduces a global metric, called morphometricity, as a measure of the anatomical signature of different traits. Morphometricity is defined as the proportion of phenotypic variation that can be explained by macroscopic brain morphology. We estimate morphometricity via a linear mixed-effects model that uses an anatomical similarity matrix computed based on measurements derived from structural brain MRI scans. We examined over 3,800 unique MRI scans from nine large-scale studies to estimate the morphometricity of a range of phenotypes, including clinical diagnoses such as Alzheimer’s disease, and nonclinical traits such as measures of cognition. Our results demonstrate that morphometricity can provide novel insights about the neuroanatomical correlates of a diverse set of traits, revealing associations that might not be detectable through traditional statistical techniques.National Institute for Biomedical Imaging and Bioengineering (U.S.) (R01EB006758)National Institute for Biomedical Imaging and Bioengineering (U.S.) (P41EB015896)National Institute for Biomedical Imaging and Bioengineering (U.S.) (R21EB018907)National Institute for Biomedical Imaging and Bioengineering (U.S.) (R01EB019956)National Institute on Aging (5R01AG008122)National Institute on Aging (R01AG016495)National Institute of Neurological Diseases and Stroke (U.S.) (R01NS0525851)National Institute of Neurological Diseases and Stroke (U.S.) (R21NS072652)National Institute of Neurological Diseases and Stroke (U.S.) (R01NS070963)National Institute of Neurological Diseases and Stroke (U.S.) (R01NS083534)National Institute of Neurological Diseases and Stroke (U.S.) (5U01NS086625)United States. National Institutes of Health (5U01-MH093765)United States. National Institutes of Health (R01NS083534)United States. National Institutes of Health (R01NS070963)United States. National Institutes of Health (R41AG052246)United States. National Institutes of Health (1K25EB013649-01

    The immune cell infiltrate populating meningiomas is composed of mature, antigen-experienced T and B cells

    Get PDF
    BACKGROUND: Meningiomas often harbor an immune cell infiltrate that can include substantial numbers of T and B cells. However, their phenotype and characteristics remain undefined. To gain a deeper understanding of the T and B cell repertoire in this tumor, we characterized the immune infiltrate of 28 resected meningiomas representing all grades. METHODS: Immunohistochemistry was used to grossly characterize and enumerate infiltrating lymphocytes. A molecular analysis of the immunoglobulin variable region of tumor-infiltrating B cells was used to characterize their antigen experience. Flow cytometry of fresh tissue homogenate and paired peripheral blood lymphocytes was used to identify T cell phenotypes and characterize the T cell repertoire. RESULTS: A conspicuous B and T cell infiltrate, primarily clustered in perivascular spaces, was present in the microenvironment of most tumors examined. Characterization of 294 tumor-infiltrating B cells revealed clear evidence of antigen experience, in that the cardinal features of an antigen-driven B cell response were present. Meningiomas harbored populations of antigen-experienced CD4+ and CD8+ memory/effector T cells, regulatory T cells, and T cells expressing the immune checkpoint molecules PD-1 and Tim-3, indicative of exhaustion. All of these phenotypes were considerably enriched relative to their frequency in the circulation. The T cell repertoire in the tumor microenvironment included populations that were not reflected in paired peripheral blood. CONCLUSION: The tumor microenvironment of meningiomas often includes postgerminal center B cell populations. These tumors invariably include a selected, antigen-experienced, effector T cell population enriched by those that express markers of an exhausted phenotype

    Development of gaze aversion as disengagement from visual information

    Get PDF
    Older children, but not younger children, were found to look away more from the face of an interlocutor when answering difficult as opposed to easy questions. Similar results were found in earlier work with adults, who often avert their gaze during cognitively difficult tasks (A.M. Glenberg, J.L. Schroeder, & D.A. Robertson, 1998). Twenty-five 8-year-olds and 26 5-year-olds answered verbal reasoning and arithmetic questions of varying difficulty. The older children increased gaze aversion from the face of the adult questioner in response to both difficult verbal reasoning questions and difficult arithmetic questions. In contrast, younger children (5-year-olds) responded less consistently to cognitive difficulty. It is concluded that adultlike patterns of gaze aversion in response to cognitive difficulty are certainly acquired by 8 years of age. The implications of appropriate gaze aversion for children’s management of cognitive resources are considered

    Silent progression in disease activity-free relapsing multiple sclerosis.

    Get PDF
    ObjectiveRates of worsening and evolution to secondary progressive multiple sclerosis (MS) may be substantially lower in actively treated patients compared to natural history studies from the pretreatment era. Nonetheless, in our recently reported prospective cohort, more than half of patients with relapsing MS accumulated significant new disability by the 10th year of follow-up. Notably, "no evidence of disease activity" at 2 years did not predict long-term stability. Here, we determined to what extent clinical relapses and radiographic evidence of disease activity contribute to long-term disability accumulation.MethodsDisability progression was defined as an increase in Expanded Disability Status Scale (EDSS) of 1.5, 1.0, or 0.5 (or greater) from baseline EDSS = 0, 1.0-5.0, and 5.5 or higher, respectively, assessed from baseline to year 5 (±1 year) and sustained to year 10 (±1 year). Longitudinal analysis of relative brain volume loss used a linear mixed model with sex, age, disease duration, and HLA-DRB1*15:01 as covariates.ResultsRelapses were associated with a transient increase in disability over 1-year intervals (p = 0.012) but not with confirmed disability progression (p = 0.551). Relative brain volume declined at a greater rate among individuals with disability progression compared to those who remained stable (p < 0.05).InterpretationLong-term worsening is common in relapsing MS patients, is largely independent of relapse activity, and is associated with accelerated brain atrophy. We propose the term silent progression to describe the insidious disability that accrues in many patients who satisfy traditional criteria for relapsing-remitting MS. Ann Neurol 2019;85:653-666

    Isotopes of nitrogen on Mars: Atmospheric measurements by Curiosity's mass spectrometer

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102173/1/wong_readme.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102173/2/wong2013_SM_v4b.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102173/3/grl51166.pd

    1Design of the Primary Prevention Parameters Evaluation (PREPARE) trial of implantablecardioverter defibrillators to reduce patient morbidity [NCT00279279]

    Get PDF
    BACKGROUND: Implantable Cardioverter Defibrillator (ICD) therapy has been proven to be beneficial and efficacious for the treatment of serious ventricular tachyarrhythmias in primary prevention patients. However, primary prevention patients appear to have a lower incidence of ventricular arrhythmias in comparison to secondary prevention patients and consequently likely experience a higher proportion of detections due to supraventricular arrhythmias. Recent trials have demonstrated that strategic and specific programming choices reduce the number of inappropriate shocks and that anti-tachycardia pacing (ATP) is an effective alternative to shock therapy for many sustained ventricular arrhythmias. METHODS: The Primary Prevention Parameters Evaluation (PREPARE) study is a multi-center cohort study, evaluating the efficacy of a pre-specified strategic profile of VT/VF detection and therapy settings in 700 primary prevention patients in an effort to safely reduce the number of shock therapies delivered. The patients, both with and without cardiac resynchronization therapy, are compared to a well-qualified set (n = 691) of historical controls derived from the MIRACLE ICD and EMPIRIC trials. This manuscript describes the design of the PREPARE study. The study results, to be presented separately, will characterize the efficacy of this programming set (PREPARE) compared with physician-tailored programming (MIRACLE ICD and EMPIRIC)
    corecore