9 research outputs found

    Fano resonances and entanglement entropy

    Full text link
    We study the entanglement in the ground state of a chain of free spinless fermions with a single side-coupled impurity. We find a logarithmic scaling for the entanglement entropy of a segment neighboring the impurity. The prefactor of the logarithm varies continuously and contains an impurity contribution described by a one-parameter function, while the contribution of the unmodified boundary enters additively. The coefficient is found explicitly by pointing out similarities with other models involving interface defects. The proposed formula gives excellent agreement with our numerical data. If the segment has an open boundary, one finds a rapidly oscillating subleading term in the entropy that persists in the limit of large block sizes. The particle number fluctuation inside the subsystem is also reported. It is analogous with the expression for the entropy scaling, however with a simpler functional form for the coefficient.Comment: 10 pages, 10 figures, minor change

    Quasi-bound states in continuum

    Get PDF
    We report the prediction of quasi-bound states (resonant states with very long lifetimes) that occur in the eigenvalue continuum of propagating states for a wide region of parameter space. These quasi-bound states are generated in a quantum wire with two channels and an adatom, when the energy bands of the two channels overlap. A would-be bound state that lays just below the upper energy band is slightly destabilized by the lower energy band and thereby becomes a resonant state with a very long lifetime (a second QBIC lays above the lower energy band).Comment: 4 pages, 4figures, 1 tabl

    Strongly Coupled Matter-Field and Non-Analytic Decay Rate of Dipole Molecules in a Waveguide

    Full text link
    The decay rate \gam of an excited dipole molecule inside a waveguide is evaluated for the strongly coupled matter-field case near a cutoff frequency \ome_c without using perturbation analysis. Due to the singularity in the density of photon states at the cutoff frequency, we find that \gam depends non-analytically on the coupling constant \ggg as 4/3\ggg^{4/3}. In contrast to the ordinary evaluation of \gam which relies on the Fermi golden rule (itself based on perturbation analysis), \gam has an upper bound and does not diverge at \ome_c even if we assume perfect conductance in the waveguide walls. As a result, again in contrast to the statement found in the literature, the speed of emitted light from the molecule does not vanish at \ome_c and is proportional to c2/3c\ggg^{2/3} which is on the order of 10310410^3 \sim 10^4 m/s for typical dipole molecules.Comment: 4 pages, 2 figure

    Effect of transpiration on plant accumulation and translocation of PPCP/EDCs

    No full text
    The reuse of treated wastewater for agricultural irrigation in arid and hot climates where plant transpiration is high may affect plant accumulation of pharmaceutical and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs). In this study, carrot, lettuce, and tomato plants were grown in solution containing 16 PPCP/EDCs in either a cool-humid or a warm-dry environment. Leaf bioconcentration factors (BCF) were positively correlated with transpiration for chemical groups of different ionized states (p < 0.05). However, root BCFs were correlated with transpiration only for neutral PPCP/EDCs (p < 0.05). Neutral and cationic PPCP/EDCs showed similar accumulation, while anionic PPCP/EDCs had significantly higher accumulation in roots and significantly lower accumulation in leaves (p < 0.05). Results show that plant transpiration may play a significant role in the uptake and translocation of PPCP/EDCs, which may have a pronounced effect in arid and hot climates where irrigation with treated wastewater is common. [Image: see text
    corecore