329 research outputs found

    Characterization and modeling of aperiodic pressure oscillations in combustion chambers

    Get PDF
    Classification of the long-term dynamical behavior of pressure oscillations in a laboratory combustion chamber has been performed using methods of modern dynamical systems theory. The method involves the construction of a phase-space representation from a single pressure record or time series using the time-delay embedding method. The pointwise correlation dimension of the resulting attractor in phase-space provides a lower bound on the number of modes that participate in the oscillations. The results show that the oscillations are quasiperiodic with a dimension near two over an order of magnitude of amplitudes. Quasiperiodicity is a result of the incommensurate frequencies of the system acoustic modes. A model for the dynamics is constructed by converting the governing equations to a kicked-oscillator model. When compared with the experimental data, the model results have similar pressure and velocity spectra and the attractor dimension verifies that quasiperiodic oscillations are present

    Versatile ytterbium ion trap experiment for operation of scalable ion-trap chips with motional heating and transition-frequency measurements

    Get PDF
    We present the design and operation of an ytterbium ion trap experiment with a setup offering versatile optical access and 90 electrical interconnects that can host advanced surface and multilayer ion trap chips mounted on chip carriers. We operate a macroscopic ion trap compatible with this chip carrier design and characterize its performance, demonstrating secular frequencies >1 MHz, and trap and cool nearly all of the stable isotopes, including 171Yb+ ions, as well as ion crystals. For this particular trap we measure the motional heating rate 〈ṅ〉 and observe an 〈ṅ〉∝1/ω2 behavior for different secular frequencies ω. We also determine a spectral noise density SE(1 MHz)=3.6(9)×10-11 V2 m-2 Hz-1 at an ion electrode spacing of 310(10) μm. We describe the experimental setup for trapping and cooling Yb+ ions and provide frequency measurements of the 2S1/2↔2P1/2 and 2D3/2↔3D[3/2]1/2 transitions for the stable 170Yb+, 171Yb+, 172Yb+, 174Yb+, and 176Yb+ isotopes which are more precise than previously published work

    Reliability and Criterion Validity of Knee Frontal Plane Projection Angles Measured Using the Technique Application

    Get PDF
    Context: Abnormal knee frontal plane projection angles (FPPA) during movement have been associated with patellofemoral pain (PFP). As such, clinicians are interested in valid and reliable instruments suitable for broad-based clinical use that allow them to objectively measure such variables. Therefore, the purpose of the current study was to examine the criterion validity and reliability of knee FPPA measures obtained by clinicians using a free tablet application called Technique. Design: validity/reliability study Methods: To examine validity, the same raters measured ten, two-dimensional criterion reference angles at the first testing session. To examine reliability, the knee FPPA of sixteen subjects was measured by 6 raters (3 physical therapists and 3 student physical therapists) on two separate occasions while performing a single-limb stepdown task. Validity was investigated by calculating the 95% limits of agreement (LA), mean absolute differences, and Bland-Altman plots. Reliability was examined by calculating intraclass correlation coefficients (ICC) and the standard error of measure (SEM). Results: For validity, the mean absolute difference between rater and criterion reference angle measures ranged from 0.20 to 0.90 degrees. 95% of expected errors between rater and criterion reference angle measures were 2.04 degrees or less. For reliability, the ICC values for inter- and intrarater reliability were excellent ranging from 0.994 to 0.998 with SEM ranging from 0.44 to 0.84 degrees. Conclusions: These findings indicate that knee FPPA measures obtained during a single-limb stepdown task using the Technique tablet application are valid and reliable, and suitable for clinical use

    The Temporal Development of Fatty Infiltrates in the Neck Muscles Following Whiplash Injury: An Association with Pain and Posttraumatic Stress

    Get PDF
    Radiological findings associated with poor recovery following whiplash injury remain elusive. Muscle fatty infiltrates (MFI) in the cervical extensors on magnetic resonance imaging (MRI) in patients with chronic pain have been observed. Their association with specific aspects of pain and psychological factors have yet to be explored longitudinally.44 subjects with whiplash injury were enrolled at 4 weeks post-injury and classified at 6 months using scores on the Neck Disability Index as recovered, mild and moderate/severe. A measure for MFI and patient self-report of pain, loss of cervical range of movement and posttraumatic stress disorder (PTSD) were collected at 4 weeks, 3 months and 6 months post-injury. The effects of time and group and the interaction of time by group on MFI were determined. We assessed the mediating effect of posttraumatic stress and cervical range of movement on the longitudinal relationship between initial pain intensity and MFI. There was no difference in MFI across all groups at enrollment. MFI values increased in the moderate/severe group and were significantly higher in comparison to the recovered and mild groups at 3 and 6 months. No differences in MFI values were found between the mild and recovered groups. Initial severity of PTSD symptoms mediated the relationship between pain intensity and MFI at 6 months. Initial ROM loss did not.MFI in the cervical extensors occur soon following whiplash injury and suggest the possibility for the occurrence of a more severe injury with subsequent PTSD in patients with persistent symptoms

    Timing of therapy for latent tuberculosis infection among immigrants presenting to a U.S. public health clinic: a retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the U.S. more than half of incident tuberculosis (TB) cases occur in immigrants. Current guidelines recommend screening and treatment for latent TB infection (LTBI) within 5 years of arrival to the U.S. This study evaluates the timing of LTBI therapy among immigrants presenting for care to a public health TB clinic.</p> <p>Methods</p> <p>Retrospective chart review of patients prescribed LTBI treatment based on medical records from Prince Georges County Health Department.</p> <p>Results</p> <p>1882 immigrants received LTBI therapy at Prince Georges County Health Department between 1999 and 2004. 417 of these patients were diagnosed with LTBI through contact investigations and were excluded from the analysis. Among the remaining 1465 individuals, median time from arrival to the U.S. until initiation of LTBI therapy was 5 months (range 0–42.4 years). 16% of all immigrants initiated therapy more than 5 years after arrival to the U.S. A logistic regression model using risks identified on univariate analysis revealed that referral for therapy by non-immigration proceedings was the strongest predictor of initiation of therapy more than 5 years after arrival to the U.S. Other factors associated with > 5 year U.S. residence prior to initiation of LTBI therapy included female gender (adjusted odds ratio (AOR) 1.8, 95% CI 1.2–2.6), age ≥ 35 (AOR = 4.1, 95% 2.5–6.6), and originating from Latin American and the Caribbean (AOR = 1.9, 95% CI 1.3–3.0).</p> <p>Conclusion</p> <p>Foreign-born individuals who are not referred for LTBI therapy through immigration proceedings are less likely to receive LTBI therapy within 5 years of arrival to the U.S. These data highlight the need to explore other mechanisms for timely LTBI screening beyond services provided by immigration.</p

    Species and population specific gene expression in blood transcriptomes of marine turtles

    Get PDF
    Background: Transcriptomic data has demonstrated utility to advance the study of physiological diversity and organisms’ responses to environmental stressors. However, a lack of genomic resources and challenges associated with collecting high-quality RNA can limit its application for many wild populations. Minimally invasive blood sampling combined with de novo transcriptomic approaches has great potential to alleviate these barriers. Here, we advance these goals for marine turtles by generating high quality de novo blood transcriptome assemblies to characterize functional diversity and compare global transcriptional profiles between tissues, species, and foraging aggregations. Results: We generated high quality blood transcriptome assemblies for hawksbill (Eretmochelys imbricata), loggerhead (Caretta caretta), green (Chelonia mydas), and leatherback (Dermochelys coriacea) turtles. The functional diversity in assembled blood transcriptomes was comparable to those from more traditionally sampled tissues. A total of 31.3% of orthogroups identified were present in all four species, representing a core set of conserved genes expressed in blood and shared across marine turtle species. We observed strong species-specific expression of these genes, as well as distinct transcriptomic profiles between green turtle foraging aggregations that inhabit areas of greater or lesser anthropogenic disturbance. Conclusions: Obtaining global gene expression data through non-lethal, minimally invasive sampling can greatly expand the applications of RNA-sequencing in protected long-lived species such as marine turtles. The distinct differences in gene expression signatures between species and foraging aggregations provide insight into the functional genomics underlying the diversity in this ancient vertebrate lineage. The transcriptomic resources generated here can be used in further studies examining the evolutionary ecology and anthropogenic impacts on marine turtles
    corecore