344 research outputs found

    Innermost stable circular orbits around magnetized rotating massive stars

    Full text link
    In 1998, Shibata and Sasaki [Phys. Rev. D 58, 104011 (1998)] presented an approximate analytical formula for the radius of the innermost stable circular orbit (ISCO) of a neutral test particle around a massive, rotating and deformed source. In the present paper, we generalize their expression by including the magnetic dipole moment. We show that our approximate analytical formulas are accurate enough by comparing them with the six-parametric exact solution calculated by Pach\'on et. al. [Phys. Rev. D 73, 104038 (2006)] along with the numerical data presented by Berti and Stergioulas [MNRAS 350, 1416 (2004)] for realistic neutron stars. As a main result, we find that in general, the radius at ISCO exhibits a decreasing behavior with increasing magnetic field. However, for magnetic fields below 100GT the variation of the radius at ISCO is negligible and hence the non-magnetized approximate expression can be used. In addition, we derive approximate analytical formulas for angular velocity, energy and angular momentum of the test particle at ISCO.Comment: 8 pages, 3 figure

    Nonlinear r-modes in Rapidly Rotating Relativistic Stars

    Full text link
    The r-mode instability in rotating relativistic stars has been shown recently to have important astrophysical implications (including the emission of detectable gravitational radiation, the explanation of the initial spins of young neutron stars and the spin-distribution of millisecond pulsars and the explanation of one type of gamma-ray bursts), provided that r-modes are not saturated at low amplitudes by nonlinear effects or by dissipative mechanisms. Here, we present the first study of nonlinear r-modes in isentropic, rapidly rotating relativistic stars, via 3-D general-relativistic hydrodynamical evolutions. Our numerical simulations show that (1) on dynamical timescales, there is no strong nonlinear coupling of r-modes to other modes at amplitudes of order one -- unless nonlinear saturation occurs on longer timescales, the maximum r-mode amplitude is of order unity (i.e., the velocity perturbation is of the same order as the rotational velocity at the equator). An absolute upper limit on the amplitude (relevant, perhaps, for the most rapidly rotating stars) is set by causality. (2) r-modes and inertial modes in isentropic stars are predominantly discrete modes and possible associated continuous parts were not identified in our simulations. (3) In addition, the kinematical drift associated with r-modes, recently found by Rezzolla, Lamb and Shapiro (2000), appears to be present in our simulations, but an unambiguous confirmation requires more precise initial data. We discuss the implications of our findings for the detectability of gravitational waves from the r-mode instability.Comment: 4 pages, 4 eps figures, accepted in Physical Review Letter

    Grid-based semantic integration of heterogeneous data resources : implementation on a HealthGrid

    Get PDF
    The semantic integration of geographically distributed and heterogeneous data resources still remains a key challenge in Grid infrastructures. Today's mainstream Grid technologies hold the promise to meet this challenge in a systematic manner, making data applications more scalable and manageable. The thesis conducts a thorough investigation of the problem, the state of the art, and the related technologies, and proposes an Architecture for Semantic Integration of Data Sources (ASIDS) addressing the semantic heterogeneity issue. It defines a simple mechanism for the interoperability of heterogeneous data sources in order to extract or discover information regardless of their different semantics. The constituent technologies of this architecture include Globus Toolkit (GT4) and OGSA-DAI (Open Grid Service Architecture Data Integration and Access) alongside other web services technologies such as XML (Extensive Markup Language). To show this, the ASIDS architecture was implemented and tested in a realistic setting by building an exemplar application prototype on a HealthGrid (pilot implementation). The study followed an empirical research methodology and was informed by extensive literature surveys and a critical analysis of the relevant technologies and their synergies. The two literature reviews, together with the analysis of the technology background, have provided a good overview of the current Grid and HealthGrid landscape, produced some valuable taxonomies, explored new paths by integrating technologies, and more importantly illuminated the problem and guided the research process towards a promising solution. Yet the primary contribution of this research is an approach that uses contemporary Grid technologies for integrating heterogeneous data resources that have semantically different. data fields (attributes). It has been practically demonstrated (using a prototype HealthGrid) that discovery in semantically integrated distributed data sources can be feasible by using mainstream Grid technologies, which have been shown to have some Significant advantages over non-Grid based approaches.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Oscillations of rapidly rotating relativistic stars

    Full text link
    Non-axisymmetric oscillations of rapidly rotating relativistic stars are studied using the Cowling approximation. The oscillation spectra have been estimated by Fourier transforming the evolution equations describing the perturbations. This is the first study of its kind and provides information on the effect of fast rotation on the oscillation spectra while it offers the possibility in studying the complete problem by including spacetime perturbations. Our study includes both axisymmetric and non-axisymmetric perturbations and provides limits for the onset of the secular bar mode rotational instability. We also present approximate formulae for the dependence of the oscillation spectrum from rotation. The results suggest that it is possible to extract the relativistic star's parameters from the observed gravitational wave spectrum.Comment: this article will be published in Physical Review

    Evolutions of Magnetized and Rotating Neutron Stars

    Full text link
    We study the evolution of magnetized and rigidly rotating neutron stars within a fully general relativistic implementation of ideal magnetohydrodynamics with no assumed symmetries in three spatial dimensions. The stars are modeled as rotating, magnetized polytropic stars and we examine diverse scenarios to study their dynamics and stability properties. In particular we concentrate on the stability of the stars and possible critical behavior. In addition to their intrinsic physical significance, we use these evolutions as further tests of our implementation which incorporates new developments to handle magnetized systems.Comment: 12 pages, 8 figure

    Three-dimensional general relativistic hydrodynamics II: long-term dynamics of single relativistic stars

    Get PDF
    This is the second in a series of papers on the construction and validation of a three-dimensional code for the solution of the coupled system of the Einstein equations and of the general relativistic hydrodynamic equations, and on the application of this code to problems in general relativistic astrophysics. In particular, we report on the accuracy of our code in the long-term dynamical evolution of relativistic stars and on some new physics results obtained in the process of code testing. The tests involve single non-rotating stars in stable equilibrium, non-rotating stars undergoing radial and quadrupolar oscillations, non-rotating stars on the unstable branch of the equilibrium configurations migrating to the stable branch, non-rotating stars undergoing gravitational collapse to a black hole, and rapidly rotating stars in stable equilibrium and undergoing quasi-radial oscillations. The numerical evolutions have been carried out in full general relativity using different types of polytropic equations of state using either the rest-mass density only, or the rest-mass density and the internal energy as independent variables. New variants of the spacetime evolution and new high resolution shock capturing (HRSC) treatments based on Riemann solvers and slope limiters have been implemented and the results compared with those obtained from previous methods. Finally, we have obtained the first eigenfrequencies of rotating stars in full general relativity and rapid rotation. A long standing problem, such frequencies have not been obtained by other methods. Overall, and to the best of our knowledge, the results presented in this paper represent the most accurate long-term three-dimensional evolutions of relativistic stars available to date.Comment: 19 pages, 17 figure

    Population synthesis of neutron stars, strange (quark) stars and black holes

    Get PDF
    We compute and present the distribution in mass of single and binary neutron stars, strange stars, and black holes. The calculations were performed using a stellar population synthesis code. We follow all phases of single and binary evolution, starting from a ZAMS binary and ending in the creation of one compact object (neutron star, black hole, strange star) and a white dwarf, or two compact objects (single or binary). We assume that neutron stars are formed in the collapse of iron/nickel cores in the mass range M0 < M < M1, quark stars in the range M1 M2 and find that the population of quark stars can easily be as large as the population of black holes, even if there is only a small mass window for their formation.Comment: 4 pages, 4 figures, to appear in the proceedings of "The 4th Integral Workshop

    Last orbits of binary strange quark stars

    Get PDF
    We present the first relativistic calculations of the final phase of inspiral of a binary system consisting of two stars built predominantely of strange quark matter (strange quark stars). We study the precoalescing stage within the Isenberg-Wilson-Mathews approximation of general relativity using a multidomain spectral method. A hydrodynamical treatment is performed under the assumption that the flow is either rigidly rotating or irrotational, taking into account the finite density at the stellar surface -- a distinctive feature with respect to the neutron star case. The gravitational-radiation driven evolution of the binary system is approximated by a sequence of quasi-equilibrium configurations at fixed baryon number and decreasing separation. We find that the innermost stable circular orbit (ISCO) is given by an orbital instability both for synchronized and irrotational systems. This constrasts with neutron stars for which the ISCO is given by the mass-shedding limit in the irrotational case. The gravitational wave frequency at the ISCO, which marks the end of the inspiral phase, is found to be 1400 Hz for two irrotational 1.35 Msol strange stars and for the MIT bag model of strange matter with massless quarks and a bag constant B=60 MeV/fm^3. Detailed comparisons with binary neutrons star models, as well as with third order Post-Newtonian point-mass binaries are given.Comment: 11 pages, 10 figures, improved conclusion and figures, references added, accepted for publication in Phys. Rev.

    Small strange stars and marginally stable orbit in Newtonian theory

    Get PDF
    It is shown that for very rapidly rotating low mass strange stars the marginally stable orbit is located above the stellar surface. This effect is explained by the very important role of the oblateness of the rotating strange star. The comparison with some ``academic'' examples is presented. This feature is purely Newtonian in its nature and has nothing to do with relativistic marginally stable orbit. The effect is very large and cannot be treated in a perturbative way. It seems that strange stars as a very dense self-bound objects are the only possibility in Nature to represent these toy models.Comment: 4 pages, 5 figures, minor text and Fig.2 changes, references added, Phys. Rev. D, accepte

    Gravitational-wave astronomy: the high-frequency window

    Full text link
    This contribution is divided in two parts. The first part provides a text-book level introduction to gravitational radiation. The key concepts required for a discussion of gravitational-wave physics are introduced. In particular, the quadrupole formula is applied to the anticipated ``bread-and-butter'' source for detectors like LIGO, GEO600, EGO and TAMA300: inspiralling compact binaries. The second part provides a brief review of high frequency gravitational waves. In the frequency range above (say) 100Hz, gravitational collapse, rotational instabilities and oscillations of the remnant compact objects are potentially important sources of gravitational waves. Significant and unique information concerning the various stages of collapse, the evolution of protoneutron stars and the details of the supranuclear equation of state of such objects can be drawn from careful study of the gravitational-wave signal. As the amount of exciting physics one may be able to study via the detections of gravitational waves from these sources is truly inspiring, there is strong motivation for the development of future generations of ground based detectors sensitive in the range from hundreds of Hz to several kHz.Comment: 21 pages, 5 figures, Lectures presented at the 2nd Aegean Summer School on the Early Universe, Syros, Greece, September 200
    • …
    corecore