1,576 research outputs found

    What’s on the (publication fee) menu, who pays the bill and what should be the venue?

    Get PDF
    We address the cost of access to knowledge and its ethical implications in ‘true’, ‘pseudo’ and ‘hybrid’ OA journals

    Age at maturity of Mediterranean marine fishes

    Get PDF
    In this review we collected data on the age at maturity (tm) and maximum reported age (tmax) for 235 stocks of Mediterranean marine fishes, belonging to 82 species, 37 families, 12 orders and 2 classes (Actinopterygii and Elasmobranchii). Among Actinopterygii (mean tm ± SD = 2.20 ± 1.43 y, n = 215), tm ranged from 0.3 y, for the common goby Pomatoschistus microps, to 12 y, for dusky grouper Epinephelus marginatus, while among Elasmobranchii (mean tm ± SD = 5.94 ± 2.47 y, n = 20), tm ranged between 2.7 y, for brown ray Raja miraletus, and 12 y for picked dogfish Squalus acanthias. Overall, the tmax ranged between 1 y, for transparent goby Aphia minuta, and 70 y, for wreckfish Polyprion americanus. The mean tmax of Actinopterygii (tmax ± SD = 10.14 ± 9.42 y) was lower than that of Elasmobranchii (tmax ± SD = 14.05 ± 8.47 y). The tm exhibited a strong positive linear relation with tmax for both Actinopterygii (logtm = 0.58 ÂŽ logtmax – 0.25, r2 = 0.51, P < 0.001) and Elasmobranchii (logtm = 0.67 ÂŽ logtmax – 0.006, r2 = 0.51, P = 0.007). The mean tm/tmax did not differ significantly with sex within Actinopterygii (ANOVA: F = 0.27, P = 0.60, n = 90; females: mean ± SD = 0.276 ± 0.143; males: mean ± SD = 0.265 ± 0.138) and Elasmobranchii (ANOVA: F = 1.44, P = 0.25, n = 10; females: mean ± SD = 0.499 ± 0.166; males: mean ± SD = 0.418 ± 0.133). Finally, the dimensionless ratio tm/tmax was significantly lower (ANOVA: F = 31.04, P < 0.001) for Actinopterygii (mean ± SD = 0.270 ± 0.135, n = 180) than for Elasmobranchii, (mean ± SD = 0.458 ± 0.152, n = 20), when stocks with combined sexes were excluded from the analysis

    Human Movement Variability and Aging

    Get PDF
    An optimal level of variability enables us to interact adaptively and safely to a continuously changing environment, where often our movements must be adjusted in a matter of milliseconds. A large body of research exists that demonstrates natural variability in healthy gait (along with variability in other, healthy biological signals such as heart rate) and a loss of this variability in aging and injury, as well as in a variety of neurodegenerative and physiological disorders. We submit that this field of research is now in pressing need of an innovative “next step” that goes beyond the many descriptive studies that characterize levels of variability in various patient populations. We need to devise novel therapies that will harness the existing knowledge on biological variability and create new possibilities for those in the grip of disease. We also propose that the nature of the specific physiological limitation present in the neuromuscular apparatus may be less important in the physiological complexity framework than the control mechanisms adopted by the older individual in the coordination of the available degrees of freedom. The theoretical underpinnings of this framework suggest that interventions designed to restore healthy system dynamics may optimize functional improvements in older adults. We submit that interventions based on the restoration of optimal variability and movement complexity could potentially be applied across a range of diseases or dysfunctions as it addresses the adaptability and coordination of available degrees of freedom, regardless of the internal constraints of the individual

    Editorial note on weight–length relations of fishes

    Get PDF
    Weight-length relations of fishes are useful for estimation of biomass from length observations, e.g., in fisheries or conservation research. Here we provide some guidance to authors of such papers, in order to facilitate the publication and review process

    Step activity and stride-to-stride fluctuations are negatively correlated in individuals with transtibial amputation

    Get PDF
    Background Variability occurs naturally from stride to stride in healthy gait. It has been shown that individuals with lower limb loss have significantly increased stride-to-stride fluctuations during walking. This is considered indicative of movement disorganization and is associated with less healthy movement. Given that lower limb prosthesis users perform on average less physical activity than able bodied individuals, the purpose of this study was to determine whether increased fluctuations also correspond to a reduced level of activity in daily life. Methods Twenty-two transtibial amputees wore an activity monitor (Actigraph, Pensacola, FL, USA) for 3 weeks. Lower limb kinematics during treadmill walking were measured using a 12-camera motion capture system. The largest Lyapunov exponent (λ) was calculated bilaterally at the ankle, knee and hip to quantify the stride-to-stride fluctuations of the lower limb joints. Pearson correlations were used to identify the relationships between the average daily step count over the 3 week collection period and λ. Findings Significant, moderate negative correlations between daily step count and λ were found at the intact ankle (r = 0.57, P = 0.005), and the knee on the affected side (r = 0.44, P = 0.038). No such correlation was found at any other lower limb joint. Interpretation The negative correlation evident at these two joints demonstrates that increased stride-to-stride fluctuations are related to decreased activity levels, however it remains unclear whether these changes in the stride-to-stride fluctuations promote decreased activity or whether less active individuals do not gain sufficient motor learning experience to achieve a skilled movement

    Editorial note on reproductive biology of fishes

    Get PDF
    Fish reproductive biology (onset and duration of spawning, sex ratio, maturity stages, length and age at maturity, and fecundity) is important in fisheries research, stock assessment, and management. In this editorial note, we provide some criteria and recommendations on issues of fish reproductive biology, which may be useful in research planning, data analysis and presentation, as well as in manuscript preparation

    Patterns of Gait Variability Across the Lifespan in Persons With and Without Down Syndrome

    Get PDF
    Background and Purpose: Greater gait variability has been observed in persons with Down syndrome (DS). An understanding of baseline patterns of variability, how these patterns relate to adaptive control of gait, and whether increasing or decreasing variability is better is necessary for physical therapists to determine whether and when to intervene. Our aim was to describe patterns of gait variability across the lifespan in persons with DS. Methods: We examined differences in patterns of gait variability in new walkers, preadolescents, and adults with DS and typical development (TD). We collected kinematic data, while participants walked on a treadmill, and analyzed the data using the nonlinear measures of Lyapunov Exponent (LyE) and Approximate Entropy (ApEn). Results: Beyond the greater gait variability demonstrated across the lifespan in persons with DS compared with their peers with TD, we report herein significant differences in nonlinear measures of patterns of variability. Preadolescents demonstrated higher LyE and ApEn values than new walkers and adults, suggesting that they are more adaptive in their use of variability during gait. Conclusion: From a clinical perspective, our results suggest that it may be of value to focus interventions on increasing adaptive use of variability during gait in new walkers and adults with DS. Experience with increased variability through practice under variable conditions or with perturbations may improve adaptive use of variability during gait

    Dynamic balance changes within three weeks of fitting a new prosthetic foot component

    Get PDF
    Balance during walking is of high importance to prosthesis users and may affect walking during baseline observation and evaluation. The aim of this study was to determine whether changes in walking balance occurred during an adaptation period following the fitting of a new prosthetic component. Margin of stability in the medial-lateral direction (MOSML) and an anterior instability margin (AIM) were used to quantify the dynamic balance of 21 unilateral transtibial amputees during overground walking. Participants trialled two prosthetic feet presenting contrasting movement/balance constraints; a Higher Activity foot similar to that of their own prosthesis, and a Lower Activity foot. Participants were assessed before (Visit 1) and after (Visit 2) a 3-week adaptation period on each foot. With the Higher Activity component, MOSML decreased on the prosthetic side, and increased on the sound side from Visit 1 to Visit 2, eliminating a significant inter-limb difference apparent at Visit 1 (Visit 1–sound = 0.062 m, prosthetic = 0.075 m, p = 0.018; Visit 2–sound = 0.066 m, prosthetic = 0.074 m, p = 0.084). No such change was seen with the Lower Activity foot (Visit 1–sound = 0.064 m, prosthetic = 0.077 m, p = 0.007; Visit 2–sound = 0.063 m, prosthetic = 0.080 m, p \u3c 0.001). Significant changes in AIM were observed at Visit 2 (Visit 1: −0.16 (0.08) m, Visit 2: −0.17 (0.08) m; F = 23.396, p \u3c 0.01). These findings suggest that changes in balance during walking can occur following the initial receipt of a device regardless of whether the component is of the same functional category as the one an individual is accustomed to using

    Changes in human walking dynamics induced by uneven terrain are reduced with ongoing exposure, but a higher variability persists

    Get PDF
    During walking, uneven terrain alters the action of the ground reaction force from stride to stride. The extent to which such environmental inconsistencies are withstood may be revealed by the regulation of whole-body angular momentum (L) during walking. L quantifies the balance of momenta of the body segments (thigh, trunk, etc.) about their combined center of mass, and remains close to zero during level walking. A failure to constrain L has been linked to falls. The aim of this study was to explore the ability of young adults to orchestrate their movement on uneven terrain, illustrated by the range of L (LR) and its variability (vLR). In eleven male adults, we observed significant increases in sagittal plane LR, and vLR in all three planes of motion during walking on an uneven in comparison to a flat surface. No reductions in these measures were observed within a 12-minute familiarisation period, suggesting that unimpaired adults either are unable to, or do not need to eliminate the effects of uneven terrain. Transverse plane LR, in contrast, was lower on immediate exposure, and then increased, pointing to the development of a less restrictive movement pattern, and would support the latter hypothesis
    • 

    corecore