6,284 research outputs found

    Extended Bose-Hubbard model with incompressible states at fractional numbers

    Full text link
    The Bose-Hubbard model is extended to include nearest and far neighbor interactions and is related to the fractional quantum Hall effect (FQHE). Both models may be studied in optical lattices with quantum gases. The ground state is calculated for the extended Bose-Hubbard model with strong repulsive interactions (weak hopping). Incompressible Mott insulator states are found at rational filling fractions compatible with the principal and secondary FQHE filling fractions of the lowest Landau levels observed experimentally. It is discussed to which extent these states at fractional filling survive or undergoes a Mott insulator transition to a superfluid as hopping terms are included.Comment: Revised version, to appear in PR

    Gas of self-avoiding loops on the brickwork lattice

    Full text link
    An exact calculation of the phase diagram for a loop gas model on the brickwork lattice is presented. The model includes a bending energy. In the dense limit, where all the lattice sites are occupied, a phase transition occuring at an asymmetric Lifshitz tricritical point is observed as the temperature associated with the bending energy is varied. Various critical exponents are calculated. At lower densities, two lines of transitions (in the Ising universality class) are observed, terminated by a tricritical point, where there is a change in the modulation of the correlation function. To each tricritical point an associated disorder line is found.Comment: 19 pages, 6 figures. to appear in J. Phys. A : Math. & Ge

    Properties of the non-Gaussian fixed point in 4D compact U(1) lattice gauge theory

    Get PDF
    We examine selected properties of the gauge-ball spectrum and fermionic variables in the vicinity of the recently discussed non-Gaussian fixed point of 4D compact U(1) lattice gauge theory within the quenched approximation. Approaching the critical point from within the confinement phase, our data support scaling of T1+T1^{+-} gauge-ball states in units of the string tension square root. The analysis of the chiral condensate within the framework of a scaling form for the equation of state suggests non mean-field values for the magnetic exponents δ\delta and βexp\beta_{exp}.Comment: 73K postscript fil

    Examination Feedback

    Get PDF
    This project focussed on exploring types of examination feedback. The project brought together key stakeholders from UPSU, students, academic and educational development staff. The aim was to consider perceptions, experiences, expectations and practical considerations of different feedback models to inform the development of an institutional wide examination feedback toolkit. Staff in two academic disciplines, Law and Sociology piloted different formats of examination feedback.TFA

    Effective Field Theory of the Zero-Temperature Triangular-Lattice Antiferromagnet: A Monte Carlo Study

    Full text link
    Using a Monte Carlo coarse-graining technique introduced by Binder et al., we have explicitly constructed the continuum field theory for the zero-temperature triangular Ising antiferromagnet. We verify the conjecture that this is a gaussian theory of the height variable in the interface representation of the spin model. We also measure the height-height correlation function and deduce the stiffness constant. In addition, we investigate the nature of defect-defect interactions at finite temperatures, and find that the two-dimensional Coulomb gas scenario applies at low temperatures.Comment: 26 pages, 9 figure

    Multichannel oscillations and relations between LSND, KARMEN and MiniBooNE, with and without CP violation

    Full text link
    We show by examples that multichannel mixing can affect both the parameters extracted from neutrino oscillation experiments, and that more general conclusions derived by fitting the experimental data under the assumption that only two channels are involved in the mixing. Implications for MiniBooNE are noted and an example based on maximal CP violation displays profound implications for the two data sets (muon-neutrino and muon-antineutrino) of that experiment.Comment: 5 pages 4 figure

    Architectural/Environmental Handbook for Extraterrestrial Design

    Get PDF
    Handbook on environmental and space utilization criteria for design of extraterrestrial manned spacecraft and shelter

    Scaling of gauge balls and static potential in the confinement phase of the pure U(1) lattice gauge theory

    Get PDF
    We investigate the scaling behaviour of gauge-ball masses and static potential in the pure U(1) lattice gauge theory on toroidal lattices. An extended gauge field action P(βcosΘP+γcos2ΘP)-\sum_P(\beta \cos\Theta_P + \gamma \cos2\Theta_P) is used with γ=0.2\gamma= -0.2 and -0.5. Gauge-ball correlation functions with all possible lattice quantum numbers are calculated. Most gauge-ball masses scale with the non-Gaussian exponent νng0.36\nu_{ng}\approx 0.36. The A1++A_1^{++} gauge-ball mass scales with the Gaussian value νg0.5\nu_{g} \approx 0.5 in the investigated range of correlation lengths. The static potential is examined with Sommer's method. The long range part scales consistently with νng\nu_{ng} but the short range part tends to yield smaller values of ν\nu. The β\beta-function, having a UV stable zero, is obtained from the running coupling. These results hold for both γ\gamma values, supporting universality. Consequences for the continuum limit of the theory are discussed.Comment: Contribution to the Lattice 97 proceedings, LaTeX, 3 pages, 3 figure

    Two-dimensional charge order in layered 2-1-4 perovskite oxides

    Full text link
    Monte Carlo simulations are performed on the three-dimensional (3D) Ising model with the 2-1-4 layered perovskite structure as a minimal model for checkerboard charge ordering phenomena in layered perovskite oxides. Due to the interlayer frustration, only 2D long-range order emerges with a finite correlation length along the c axis. Critical exponents of the transition change continuously as a function of the interlayer coupling constant. The interlayer long-range Coulomb interaction decays exponentially and is negligible even between the second-neighbor layers. Instead, monoclinic distortion of a tetragonal unit cell lifts the macroscopic degeneracy to induce a 3D charge ordering. The dimensionality of the charge order in La0.5_{0.5}Sr1.5_{1.5}MnO4_4 is discussed from this viewpoint.Comment: 5 pages including 6 figures, with major changes including discussion on charge ordering phenomena in layered perovskite oxide

    Elementary excitations in the gapped phase of a frustrated S=1/2 spin ladder: from spinons to the Haldane triplet

    Full text link
    We use the variational matrix-product ansatz to study elementary excitations in the S=1/2 ladder with additional diagonal coupling, equivalent to a single S=1/2 chain with alternating exchange and next-nearest neighbor interaction. In absence of alternation the elementary excitation consists of two free S=1/2 particles ("spinons") which are solitons in the dimer order. When the nearest-neighbor exchange alternates, the "spinons" are confined into one S=1 excitation being a soliton in the generalized string order. Variational results are found to be in a qualitative agreement with the exact diagonalization data for 24 spins. We argue that such an approach gives a reasonably good description in a wide range of the model parameters.Comment: RevTeX, 13 pages, 11 embedded figures, uses psfig and multico
    corecore