8,675 research outputs found

    Test of Nuclear Wave Functions for Pseudospin Symmetry

    Get PDF
    Using the fact that pseudospin is an approximate symmetry of the Dirac Hamiltonian with realistic scalar and vector mean fields, we derive the wave functions of the pseudospin partners of eigenstates of a realistic Dirac Hamiltonian and compare these wave functions with the wave functions of the Dirac eigenstates.Comment: 11 pages, 4 figures, minor changes in text and figures to conform with PRL requirement

    Raman-amplified pump and its use for parametric amplification and phase conjugation

    Get PDF
    We experimentally demonstrate the use of a discrete Raman amplifier for generating a high power, narrow linewidth pump for use within a fiber optical parametric amplifier (FOPA). We demonstrate the suitability of the Raman-amplified pump for parametric amplification by characterizing its optical signal to noise ratio and relative intensity noise (RIN). The amplified pump is subsequently employed within a FOPA obtaining net gain of up to 24.9 dB and a gain of >11 dB over 35 nm. The approach described here offers the key advantage over traditional EDFA-based pump generation of wavelength tuneability outside the EDFA bands. In principle this allows to place the parametric pump at any wavelength within the low fiber attenuation window. Here we additionally demonstrate Raman-assisted optical phase conjugation to provide positive conversion efficiency over 60 nm whilst employing the phase-conjugating pump power of <10 mW not requiring an amplification by EDFA. We consider this technique to show a significant promise for broadband optical phase conjugation and wavelength conversion as well as the prospect for implementation of these important phenomena outside of the EDFA bands

    Beyond Control-Flow: Extending Business Process Configuration to Roles and Objects

    Get PDF
    A configurable process model is an integrated representation of multiple variants of a business process. It is designed to be individualized to meet a particular set of requirements. As such, configurable process models promote systematic reuse of proven or common practices. Existing notations for configurable process modeling focus on capturing tasks and control-flow dependencies, neglecting equally important aspects of business processes such as data flow, material flow and resource management. This paper fills this gap by proposing an integrated meta-model for configurable processes with advanced features for capturing resources involved in the performance of tasks (through task-role associations) as well as flow of data and physical artifacts (through task-object associations). Although embodied as an extension of a popular process modeling notation, namely EPC, the meta-model is defined in an abstract and formal manner to make it applicable to other notations

    Experimental Predictions of The Functional Response of A Freshwater Fish

    Get PDF
    The functional response is the relationship between the feeding rate of an animal and its food density. It is reliant on two basic parameters; the volume searched for prey per unit time (searching rate) and the time taken to consume each prey item (handling time). As fish functional responses can be difficult to determine directly, it may be more feasible to measure their underlying behavioural parameters in controlled conditions and use these to predict the functional response. Here, we tested how accurately a Type II functional response model predicted the observed functional response of roach Rutilus rutilus, a visually foraging fish, and compared it with Type I functional response. Foraging experiments were performed by exposing fish in tank aquaria to a range of food densities, with their response captured using a two-camera videography system. This system was validated and was able to accurately measure fish behaviour in the aquaria, and enabled estimates of fish reaction distance, swimming speed (from which searching rate was calculated) and handling time to be measured. The parameterised Type II functional response model accurately predicted the observed functional response and was superior to the Type I model. These outputs suggest it will be possible to accurately measure behavioural parameters in other animal species and use these to predict the functional response in situations where it cannot be observed directly

    In-line and cascaded DWDM transmission using a 15dB net-gain polarization-insensitive fiber optical parametric amplifier

    Get PDF
    We demonstrate and characterize polarization-division multiplexed (PDM) DWDM data transmission for the first time in a range of systems incorporating a net-gain polarization-insensitive fiber optical parametric amplifier (PI-FOPA) for loss compensation. The PI-FOPA comprises a modified diversity-loop architecture to achieve 15dB net-gain, and up to 2.3THz (~18nm) bandwidth. Three representative systems are characterized using a 100Gb/s PDM-QPSK signal in conjunction with emulated DWDM neighbouring channels: (a) a 4x75km in-line fiber transmission system incorporating multiple EDFAs and a single PI-FOPA (b) N cascaded PI-FOPA amplification stages in an unlevelled Nx25km recirculating loop arrangement, with no EDFAs used within the loop signal path, and (c) M cascaded PI-FOPA amplification stages as part of an Mx75.6km gain-flattened recirculating loop system with the FOPA compensating for the transmission fiber loss, and EDFA compensation for loop switching and levelling loss. For the 4x75km in-line system (a), we transmit 45x50GHz-spaced signals (‘equivalent’ data-rate of 4.5Tb/s) with average OSNR penalty of 1.3dB over the band at 10−3 BER. For the unlevelled ‘FOPA-only’ 25.2km cascaded system (b), we report a maximum of eight recirculations for all 10x100GHz-spaced signals, and five recirculations for 20x50GHz-spaced signals. For the 75.6km levelled system (c), we achieve eight recirculations for all 20x50GHz signals resulting in a total transmission distance of 604.8km

    Signal of Quark Deconfinement in the Timing Structure of Pulsar Spin-Down

    Get PDF
    The conversion of nuclear matter to quark matter in the core of a rotating neutron star alters its moment of inertia. Hence the epoch over which conversion takes place will be signaled in the spin-down "signal_prl.tex" 581 lines, 22203 characters characteristics of pulsars. We find that an observable called the braking index should be easily measurable during the transition epoch and can have a value far removed (by orders of magnitude) from the canonical value of three expected for magnetic dipole radiation, and may have either sign. The duration of the transition epoch is governed by the slow loss of angular momentum to radiation and is further prolonged by the reduction in the moment of inertia caused by the phase change which can even introduce an era of spin-up. We estimate that about one in a hundred pulsars may be passing through this phase. The phenomenon is analogous to ``bachbending'' observed in the moment of inertia of rotating nuclei observed in the 1970's, which also signaled a change in internal structure with changing spin.Comment: 5 pages, 4 figures, Revtex. (May 12, 1997, submitted to PRL

    Lifetime measurement of the metastable 3d 2D5/2 state in the 40Ca+ ion using the shelving technique on a few-ion string

    Full text link
    We present a measurement of the lifetime of the metastable 3d 2D5/2 state in the 40Ca+ ion, using the so-called shelving technique on a string of five Doppler laser-cooled ions in a linear Paul trap. A detailed account of the data analysis is given, and systematic effects due to unwanted excitation processes and collisions with background gas atoms are discussed and estimated. From a total of 6805 shelving events, we obtain a lifetime tau=1149+/-14(stat.)+/-4(sys.)ms, a result which is in agreement with the most recent measurements.Comment: 10 pages, 7 figures. Submitted for publicatio
    corecore