13,219 research outputs found
Microgravity nucleation and particle coagulation experiments support
This project is a part of a program at GSFC to study to formation and growth of cosmic dust grain analogs under terrestrial as well as microgravity conditions. Its primary scientific objective is to study the homogeneous nucleation of refractory metal vapors and a variety of their oxides among others, while the engineering, and perhaps a more immediate objective is to develop a system capable of producing mono-dispersed, homogeneous suspensions of well-characterized refractory particles for various particle interaction experiments aboard the Space Shuttle and Space Station Freedom. Both of these objectives are to be met by a judicious combination of laboratory experiments on the ground and aboard NASA's KC-135 experimental research aircraft. Major effort during the current reporting period was devoted to the evaluation of our very successful first series of microgravity test runs in Feb. 1990. Although the apparatus performed well, it was decided to 'repackage' the equipment for easier installation on the KC-135 and access to various components. It will now consist of three separate racks: one each for the nucleation chamber, the power subsystem, and the electronic packages. The racks were fabricated at the University of Virginia and the assembly of the repackaged units is proceeding well. Preliminary analysis of the video data from the first microgravity flight series was performed and the results appear to display some trends expected from Hale's Scaled Nucleation Theory of 1986. The data acquisition system is currently being refined
Microgravity nucleation and particle coagulation experiments support
Modifications to the nucleation apparatus suggested by our first microgravity flight campaign are complete. These included a complete 'repackaging' of the equipment into three racks along with an improved vapor spout shutter mechanism and additional thermocouples for gas temperature measurements. The 'repackaged' apparatus was used in two KC-135 campaigns: one during the week of June 3, 1991 consisting of two flights with Mg and two with Zn, and another series consisting of three flights with Zn during the week of September 23, 1991. Our effort then was focused on the analysis of these data, including further development of the mathematical models to generate the values of temperature and supersaturation at the observed points of nucleation. The efforts to apply Hale's Scaled Nucleation Theory to our experimental data have met with only limited success, most likely due to still inadequate temperature field determination. Work on the development of a preliminary particle collector system designed to capture particles from the region of nucleation and condensation, as well as from other parts of the chamber, are discussed
Microgravity nucleation and particle coagulation experiments support
Researchers at NASA Goddard Space Flight Center have embarked on a program to study the formation and growth of cosmic grains. This includes experiments on the homogeneous nucleation of refractory vapors of materials such as magnesium, lead, tin, and silicon oxides. As part of this program, the Chemical Engineering Department of the University of Virginia has undertaken to develop a math model for these experiments, to assist in the design and construction of the apparatus, and to analyze the data once the experiments have begun. Status Reports 1 and 2 addressed the design of the apparatus and the development of math models for temperature and concentration fields. The bulk of this report discusses the continued refinement of these models, and the assembly and testing of the nucleation chamber along with its ancillary equipment, which began in the spring of 1988
Recurrence interval analysis of high-frequency financial returns and its application to risk estimation
We investigate the probability distributions of the recurrence intervals
between consecutive 1-min returns above a positive threshold or
below a negative threshold of two indices and 20 individual stocks in
China's stock market. The distributions of recurrence intervals for positive
and negative thresholds are symmetric, and display power-law tails tested by
three goodness-of-fit measures including the Kolmogorov-Smirnov (KS) statistic,
the weighted KS statistic and the Cram\'er-von Mises criterion. Both long-term
and shot-term memory effects are observed in the recurrence intervals for
positive and negative thresholds . We further apply the recurrence interval
analysis to the risk estimation for the Chinese stock markets based on the
probability , Value-at-Risk (VaR) analysis and VaR analysis
conditioned on preceding recurrence intervals.Comment: 17 pages, 10 figures, 1 tabl
Radiative diffusivity factors in cirrus and stratocumulus clouds: Application to two-stream models
A diffusion-like description of radiative transfer in clouds and the free atmosphere is often used. The two stream model is probably the best known example of such a description. The main idea behind the approach is that only the first few moments of radiance are needed to describe the radiative field correctly. Integration smooths details of the angular distribution of specific intensity and it is assumed that the closure parameters of the theory (diffusivity factors) are only weakly dependent on the distribution. The diffusivity factors are investigated using the results obtained from both Stratocumulus and Cirrus phases of FIRE experiment. A new theoretical framework is described in which two (upwards and downwards) diffusivity factors are used and a detailed multistream model is used to provide further insight about both the diffusivity factors and their dependence on scattering properties of clouds
Test of Nuclear Wave Functions for Pseudospin Symmetry
Using the fact that pseudospin is an approximate symmetry of the Dirac
Hamiltonian with realistic scalar and vector mean fields, we derive the wave
functions of the pseudospin partners of eigenstates of a realistic Dirac
Hamiltonian and compare these wave functions with the wave functions of the
Dirac eigenstates.Comment: 11 pages, 4 figures, minor changes in text and figures to conform
with PRL requirement
The design of an experiment to detect low energy antiprotons
The techniques to be used in a balloon borne experiment APEX to detect 220 MeV antiprotons are described, paying particular attention to potential sources of background. Event time history is shown to be very effective in eliminating this background. Results of laboratory tests on the timing resolution which may be achieved are presented
- …