202 research outputs found

    SIM PlanetQuest: Science with the Space Interferometry Mission

    Get PDF
    SIM - the Space Interferometry Mission - will perform precision optical astrometry on objects as faint as R magnitude 20. It will be the first space-based astrometric interferometer, operating in the optical band with a 10-m baseline. The Project is managed by the Jet Propulsion Laboratory, California Institute of Technology, in close collaboration with two industry partners, Lockheed Martin Missiles and Space, and TRW Inc., Space and Electronics Group. Launch of SIM is currently planned for 2009. In its wide-angle astrometric mode, SIM will yield 4 microarcsecond absolute position and parallax measurements. Astrometric planet searches will be done in a narrow-angle mode, with an accuracy of 4 microarcseconds or better in a single measurement. As a pointed rather than a survey instrument, SIM will maintain.its astrometric accuracy down to the faintest, magnitudes, opening up the opportunity for astrometry of active galactic nuclei to better than 10 pas. SIM will define a new astrometric reference frame, using a grid of approximately 1500 stars with positions accurate to 4 microarcseconds. The SIM Science Team comprises the Principal Investigators of ten Key Projects, and five Mission Scientists contributing their expertise to specific areas of the mission. Their science programs cover a wide range of topics in Galactic and extragalactic astronomy. They include: searches for low-mass planets - including analogs to our own solar system - tlie formation and dynamics of our Galaxy, calibration of the cosmic distance scale, and fundamental stellar astrophysics. All of the science observing on SIM is competitively awarded; the Science Team programs total about 40% of the total available, and the remainder will be assigned via future NASA competitions. This report is a compilation of science summaries by members of the Science Team, and it illustrates the wealth of scientific problems that microarcsecond-precision astrometry can contribute to. More information on SIM, including copies of this report, may be obtained from the project web site, at http://sim. jpl.nasa.gov

    All Sky Survey Mission Observing Scenario Strategy

    Get PDF
    This paper develops a general observing strategy for missions performing all-sky surveys, where a single spacecraft maps the celestial sphere subject to realistic constraints. The strategy is flexible such that targeted observations and variable coverage requirements can be achieved. This paper focuses on missions operating in Low Earth Orbit, where the thermal and stray-light constraints due to the Sun, Earth, and Moon result in interacting and dynamic constraints. The approach is applicable to broader mission classes, such as those that operate in different orbits or that survey the Earth. First, the instrument and spacecraft configuration is optimized to enable visibility of the targeted observations throughout the year. Second, a constraint-based high-level strategy is presented for scheduling throughout the year subject to a simplified subset of the constraints. Third, a heuristic-based scheduling algorithm is developed to assign the all-sky observations over short planning horizons. The constraint-based approach guarantees solution feasibility. The approach is applied to the proposed SPHEREx mission, which includes coverage of the North and South Celestial Poles, Galactic plane, and a uniform coverage all-sky survey, and the ability to achieve science requirements demonstrated and visualized. Visualizations demonstrate the how the all-sky survey achieves its objectives

    Astrometric Detection of Terrestrial Planets in the Habitable Zones of Nearby Stars with SIM PlanetQuest

    Full text link
    SIM PlanetQuest (Space Interferometry Mission) is a space-borne Michelson interferometer for precision stellar astrometry, with a nine meter baseline, currently slated for launch in 2015. One of the principal science goals is the astrometric detection and orbit characterization of terrestrial planets in the habitable zones of nearby stars. Differential astrometry of the target star against a set of reference stars lying within a degree will allow measurement of the target star's reflex motion with astrometric accuracy of 1 micro-arcsecond in a single measurement. We assess SIM's capability for detection (as opposed to characterization by orbit determination) of terrestrial planets in the habitable zones of nearby solar-type stars. We compare SIM's performance on target lists optimized for the SIM and Terrestrial Planet Finder Coronograph (TPF-C) missions. Performance is quantified by three metrics: minimum detectable planet mass, number and mass distribution of detected planets, and completeness of detections in each mass range. Finally, we discuss the issue of confidence in detections and non-detections, and show how information from SIM's planet survey can enable TPF to increase its yield of terrestrial planets.Comment: Minor corrections to figures and tables. 46 pages, 27 figures. To appear in PASP (Publications of the Astronomical Society of the Pacific), May 200

    Finding Earth clones with SIM: The most promising near-term technique to detect, find masses for, and determine three-dimensional orbits of nearby habitable planets

    Get PDF
    SIM is a space astrometric interferometer capable of better than one-microarcsecond (µas) single measurement accuracy, providing the capability to detect stellar "wobble" resulting from planets in orbit around nearby stars. While a search for exoplanets can be optimized in a variety of ways, a SIM five-year search optimized to detect Earth analogs (0.3 to 10 Earth masses) in the middle of the habitable zone (HZ) of nearby stars would yield the masses, without M*sin(i) ambiguity, and three-dimensional orbital parameters for planets around ~70 stars, including those in the HZ and further away from those same stars. With >200 known planets outside our solar system, astrophysical theorists have built numerical models of planet formation that match the distribution of Jovian planets discovered to date and those models predict that the number of terrestrial planets (< 10 M_⊕) would far exceed the number of more massive Jovian planets. Even so, not every star will have an Earth analog in the middle of its HZ. This paper describes the relationship between SIM and other planet detection methods, the SIM planet observing program, expected results, and the state of technical readiness for the SIM mission

    State-of-the-art VLBI imaging: 3C345

    Get PDF
    Most VLBI images have low dynamic range because they are limited by instrumental effects such as calibration errors and poor u, v-coverage. We outline the method used to make a new image of the bright quasar 3C345 which has very high dynamic range (peak-to-noise of 5000:1) and which is limited by the thermal noise, not instrumental errors. Both the Caltech VLBI package and the NRAO AIPS package were required to manipulate the data
    • …
    corecore