6 research outputs found

    Prioritizing MCDC test cases by spectral analysis of Boolean functions

    Get PDF
    Test case prioritization aims at scheduling test cases in an order that improves some performance goal. One performance goal is a measure of how quickly faults are detected. Such prioritization can be performed by exploiting the Fault Exposing Potential (FEP) parameters associated to the test cases. FEP is usually approximated by mutation analysis under certain fault assumptions. Although this technique is effective, it could be relatively expensive compared to the other prioritization techniques. This study proposes a cost-effective FEP approximation for prioritizing Modified Condition Decision Coverage (MCDC) test cases. A strict negative correlation between the FEP of a MCDC test case and the influence value of the associated input condition allows to order the test cases easily without the need of an extensive mutation analysis. The method is entirely based on mathematics and it provides useful insight into how spectral analysis of Boolean functions can benefit software testing

    Additional file 6: Figure S2. of SMCHD1 regulates a limited set of gene clusters on autosomal chromosomes

    No full text
    Transcriptional expression of the PCDHγ cluster in control, FSHD1, and FSHD2 individuals. RNA expression analysis of PCDHγ cluster isoform members in primary (A) myoblast cells and (B) myotube cells. Results represent log10 relative expression by qRT-PCR analysis of the indicated gene after normalization to the internal control gene GUS1. For each gene, the value of expression in control individuals was then arbitrarily set to 1. *Bonferroni adjusted P < 0.05, t test; n = 4 for controls, n = 10 for FSHD1, n = 7 for FSHD2; error bars = SEM. (PDF 1031 kb
    corecore