600 research outputs found

    X-ray astronomical spectroscopy

    Get PDF
    The contributions of the Goddard group to the history of X-ray astronomy are numerous and varied. One role that the group has continued to play involves the pursuit of techniques for the measurement and interpretation of the X-ray spectra of cosmic sources. The latest development is the selection of the X-ray microcalorimeter for the Advanced X-ray Astrophysics Facility (AXAF) study payload. This technology is likely to revolutionize the study of cosmic X-ray spectra

    Is the Compact Source at the Center of Cas A Pulsed?

    Get PDF
    A 50 ksec observation of the Supernova Remnant Cas A was taken using the Chandra X-Ray Observatory High Resolution Camera (HRC) to search for periodic signals from the compact source located near the center. Using the HRC-S in imaging mode, problems with correctly assigning times to events were overcome, allowing the period search to be extended to higher frequencies than possible with previous observations. In an extensive analysis of the HRC data, several possible candidate signals are found using various algorithms, including advanced techniques developed by Ransom to search for low significance periodic signals. Of the candidate periods, none is at a high enough confidence level to be particularly favored over the rest. When combined with other information, however (e.g., spectra, total energetics, and the historical age of the remnant), a 12 ms candidate period seems to be more physically plausible than the others, and we use it for illustrative purposes in discussing the possible properties of a putative neutron star in the remnant. We emphasize that this is not necessarily the true period, and that a follow-up observation, scheduled for the fall of 2001, is required. A 50 ksec Advanced CCD Imaging Spectrometer (ACIS) observation was taken, and analysis of these data for the central object shows that the spectrum is consistent with several forms, and that the emitted X-ray luminosity in the 0.1 -10 keV band is 10^{33}-10^{35}erg cm^{-2}sec^{-1} depending on the spectral model and the interstellar absorption along the line of sight to the source.Comment: 14 pages, 3 figures Submitted to ApJ 2001 June 2

    Thermal and Nonthermal Emission from the Forward Shock in Tycho's Supernova Remnant

    Full text link
    We present Chandra X-ray images of Tycho's supernova remnant that delineate its outer shock as a thin, smooth rim along the straight northeastern edge and most of the circular western half. The images also show that the Si and S ejecta are highly clumpy, and have reached near the forward shock at numerous locations. Most of the X-ray spectra that we examine along the rim show evidence of line emission from Si and S ejecta, while the continuum is well-represented by either a thermal or nonthermal model. If the continuum is assumed to be thermal, the electron temperatures at the rim are all similar at about 2 keV, while the ionization ages are very low, because of the overall weakness of the line emission. These electron temperatures are substantially below those expected for equilibration of the electron and ion temperatures, assuming shock velocities inferred from radio and X-ray expansion measurements; the electron to mean temperature ratios are <~0.1-0.2, indicating that collisionless heating of the electrons at the shock is modest. The nonthermal contribution to these spectra may be important, but cannot be strongly constrained by these data. It could account for as much as half of the flux in the 4-6 keV energy range, based on an extrapolation of the hard X-ray spectrum above 10 keV.Comment: ApJ, in press; 32 pages LaTeX, 9 postscript figures; replaced version to better match ApJ versio

    High energy from space

    Get PDF
    The following subject areas are covered: (1) important scientific problems for high energy astrophysics (stellar activity, the interstellar medium in galaxies, supernovae and endpoints of stellar evolution, nucleosynthesis, relativistic plasmas and matter under extreme conditions, nature of gamma-bursts, identification of black holes, active nuclei, accretion physics, large-scale structures, intracluster medium, nature of dark matter, and the X- and gamma-ray background); (2) the existing experimental programs (Advanced X-Ray Astrophysics Facility (AXAF), Gamma Ray Observatory (GRO), X-Ray Timing Explorer (XTE), High Energy Transient Experiment (HETE), U.S. participation in foreign missions, and attached Shuttle and Space Station Freedom payloads); (3) major missions for the 1990's; (4) a new program of moderate missions; (5) new opportunities for small missions; (6) technology development issues; and (7) policy issues

    The X-ray Remnant of SN1987A

    Get PDF
    We present high resolution Chandra observations of the remnant of SN1987A in the Large Magellanic Cloud. The high angular resolution of the Chandra X-ray Observatory (CXO) permits us to resolve the X-ray remnant. We find that the remnant is shell-like in morphology, with X-ray peaks associated with some of the optical hot spots seen in HST images. The X-ray light curve has departed from the linear flux increase observed by ROSAT, with a 0.5-2.0 keV luminosity of 1.5 x 10^35 erg/s in January 2000. We set an upper limit of 2.3 x 10^34 ergs/s on the luminosity of any embedded central source (0.5 - 2 keV). We also present a high resolution spectrum, showing that the X-ray emission is thermal in origin and is dominated by highly ionized species of O, Ne, Mg, and Si.Comment: 16 pages, 3 figures, Accepted for publication in ApJ Letter

    Iron and Nickel Line Diagnostics for the Galactic Center Diffuse Emission

    Get PDF
    We have observed the diffuse X-ray emission from the Galactic center (GC) using the X-ray Imaging Spectrometer (XIS) on Suzaku. The high-energy resolution and the low-background orbit provide excellent spectra of the GC diffuse X-rays (GCDX). The XIS found many emission lines in the GCDX near the energy of K-shell transitions of iron and nickel. The most pronounced features are FeI K alpha at 6.4 keV and K-shell absorption edge at 7.1 keV, which are from neutral and/or low ionization states of iron, and the K-shell lines at 6.7 keV and 6.9 keV from He-like (FeXXV K alpha) and hydrogenic (FeXXVI Ly alpha) ions of iron. In addition, K alpha lines from neutral or low ionization nickel (NiI K alpha) and He-like nickel (NiXXVII K alpha), and FeI K beta, FeXXV K beta, FeXXVI Ly beta, FeXXV K gamma and FeXXVI Ly gamma are detected for the first time. The line center energies and widths of FeXXV K alpha and FeXXVI Ly alpha favor a collisional excitation (CE) plasma for the origin of the GCDX. The electron temperature determined from the line flux ratio of FeXXV K alpha / FeXXV K beta is similar to the ionization temperature determined from that of FeXXV K alpha /FeXXVI Ly alpha. Thus it would appear that the GCDX plasma is close to ionization equilibrium. The 6.7 keV flux and temperature distribution to the galactic longitude is smooth and monotonic,in contrast to the integrated point source flux distribution. These facts support the hypothesis that the GCDX is truly diffuse emission rather than the integration of the outputs of a large number of unresolved point sources. In addition, our results demonstrate that the chemical composition of Fe in the interstellar gas near the GC is constrained to be about 3.5 times solar.Comment: 11 pages, 19 figures. Accepted for publication in PASJ Suzaku Special Issue (vol. 59 sp. 1

    Development and validation of the DIabetes Severity SCOre (DISSCO) in 139 626 individuals with type 2 diabetes: a retrospective cohort study

    Get PDF
    OBJECTIVE: Clinically applicable diabetes severity measures are lacking, with no previous studies comparing their predictive value with glycated hemoglobin (HbA1c). We developed and validated a type 2 diabetes severity score (the DIabetes Severity SCOre, DISSCO) and evaluated its association with risks of hospitalization and mortality, assessing its additional risk information to sociodemographic factors and HbA1c. RESEARCH DESIGN AND METHODS: We used UK primary and secondary care data for 139 626 individuals with type 2 diabetes between 2007 and 2017, aged ≥35 years, and registered in general practices in England. The study cohort was randomly divided into a training cohort (n=111 748, 80%) to develop the severity tool and a validation cohort (n=27 878). We developed baseline and longitudinal severity scores using 34 diabetes-related domains. Cox regression models (adjusted for age, gender, ethnicity, deprivation, and HbA1c) were used for primary (all-cause mortality) and secondary (hospitalization due to any cause, diabetes, hypoglycemia, or cardiovascular disease or procedures) outcomes. Likelihood ratio (LR) tests were fitted to assess the significance of adding DISSCO to the sociodemographics and HbA1c models. RESULTS: A total of 139 626 patients registered in 400 general practices, aged 63±12 years were included, 45% of whom were women, 83% were White, and 18% were from deprived areas. The mean baseline severity score was 1.3±2.0. Overall, 27 362 (20%) people died and 99 951 (72%) had ≥1 hospitalization. In the training cohort, a one-unit increase in baseline DISSCO was associated with higher hazard of mortality (HR: 1.14, 95% CI 1.13 to 1.15, area under the receiver operating characteristics curve (AUROC)=0.76) and cardiovascular hospitalization (HR: 1.45, 95% CI 1.43 to 1.46, AUROC=0.73). The LR tests showed that adding DISSCO to sociodemographic variables significantly improved the predictive value of survival models, outperforming the added value of HbA1c for all outcomes. Findings were consistent in the validation cohort. CONCLUSIONS: Higher levels of DISSCO are associated with higher risks for hospital admissions and mortality. The new severity score had higher predictive value than the proxy used in clinical practice, HbA1c. This reproducible algorithm can help practitioners stratify clinical care of patients with type 2 diabetes
    corecore