5,208 research outputs found

    Spin dynamics across the superfluid-insulator transition of spinful bosons

    Full text link
    Bosons with non-zero spin exhibit a rich variety of superfluid and insulating phases. Most phases support coherent spin oscillations, which have been the focus of numerous recent experiments. These spin oscillations are Rabi oscillations between discrete levels deep in the insulator, while deep in the superfluid they can be oscillations in the orientation of a spinful condensate. We describe the evolution of spin oscillations across the superfluid-insulator quantum phase transition. For transitions with an order parameter carrying spin, the damping of such oscillations is determined by the scaling dimension of the composite spin operator. For transitions with a spinless order parameter and gapped spin excitations, we demonstrate that the damping is determined by an associated quantum impurity problem of a localized spin excitation interacting with the bulk critical modes. We present a renormalization group analysis of the quantum impurity problem, and discuss the relationship of our results to experiments on ultracold atoms in optical lattices.Comment: 43 pages (single-column format), 8 figures; v2: corrected discussion of fixed points in Section V

    AMPK Regulation of Mouse Oocyte Meiotic Resumption in Vitro

    Get PDF
    We have previously shown that the adenosine analog 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), an activator of AMP-activated protein kinase (AMPK), stimulates an increase in AMPK activity and induces meiotic resumption in mouse oocytes [Downs, S.M., Hudson, E.R., Hardie, D.G., 2002. A potential role for AMP-activated protein kinase in meiotic induction in mouse oocytes. Dev. Biol, 245, 200–212]. The present study was carried out to better define a causative role for AMPK in oocyte meiotic maturation. When microinjected with a constitutively active AMPK, about 20% of mouse oocytes maintained in meiotic arrest with dibutyryl cAMP (dbcAMP) were stimulated to undergo germinal vesicle breakdown (GVB), while there was no effect of catalytically dead kinase. Western blot analysis revealed that germinal vesicle (GV)-stage oocytes cultured in dbcAMP-containing medium plus AICAR possessed elevated levels of active AMPK, and this was confirmed by AMPK assays using a peptide substrate of AMPK to directly measure AMPK activity. AICAR-induced meiotic resumption and AMPK activation were blocked by compound C or adenine 9-beta-d-arabinofuranoside (araA, a precursor of araATP), both inhibitors of AMPK. Compound C failed to suppress adenosine uptake and phosphorylation, indicating that it did not block AICAR action by preventing its metabolism to the AMP analog, ZMP. 2′-Deoxycoformycin (DCF), a potent adenosine deaminase inhibitor, reversed the inhibitory effect of adenosine on oocyte maturation by modulating intracellular AMP levels and activating AMPK. Rosiglitazone, an anti-diabetic agent, stimulated AMPK activation in oocytes and triggered meiotic resumption. In spontaneously maturing oocytes, GVB was preceded by AMPK activation and blocked by compound C. Collectively, these results support the proposition that active AMPK within mouse oocytes provides a potent meiosis-inducing signal in vitro

    The influence of tropospheric biennial oscillation on mid-tropospheric CO_2

    Get PDF
    Mid-tropospheric CO_2 retrieved from the Atmospheric Infrared Sounder (AIRS) was used to investigate CO_2 interannual variability over the Indo-Pacific region. A signal with periodicity around two years was found for the AIRS mid-tropospheric CO_2 for the first time, which is related to the Tropospheric Biennial Oscillation (TBO) associated with the strength of the monsoon. During a strong (weak) monsoon year, the Western Walker Circulation is strong (weak), resulting in enhanced (diminished) CO_2 transport from the surface to the mid-troposphere. As a result, there are positive (negative) CO2 anomalies at mid-troposphere over the Indo-Pacific region. We simulated the influence of the TBO on the mid-tropospheric CO_2 over the Indo-Pacific region using the MOZART-2 model, and results were consistent with observations, although we found the TBO signal in the model CO_2 is to be smaller than that in the AIRS observations

    Asymptotic stability, concentration, and oscillation in harmonic map heat-flow, Landau-Lifshitz, and Schroedinger maps on R^2

    Get PDF
    We consider the Landau-Lifshitz equations of ferromagnetism (including the harmonic map heat-flow and Schroedinger flow as special cases) for degree m equivariant maps from R^2 to S^2. If m \geq 3, we prove that near-minimal energy solutions converge to a harmonic map as t goes to infinity (asymptotic stability), extending previous work down to degree m = 3. Due to slow spatial decay of the harmonic map components, a new approach is needed for m=3, involving (among other tools) a "normal form" for the parameter dynamics, and the 2D radial double-endpoint Strichartz estimate for Schroedinger operators with sufficiently repulsive potentials (which may be of some independent interest). When m=2 this asymptotic stability may fail: in the case of heat-flow with a further symmetry restriction, we show that more exotic asymptotics are possible, including infinite-time concentration (blow-up), and even "eternal oscillation".Comment: 34 page

    Spontaneous symmetry breaking of (1+1)-dimensional ϕ4\phi^4 theory in light-front field theory (II)

    Full text link
    We discuss spontaneous symmetry breaking of (1+1)-dimensional ϕ4\phi^4 theory in light-front field theory using a Tamm-Dancoff truncation. We show that, even though light-front field theory has a simple vacuum state which is an eigenstate of the full Hamiltonian, the field can develop a nonzero vacuum expectation value. This occurs because the zero mode of the field must satisfy an operator valued constraint equation. In the context of (1+1)-dimensional ϕ4\phi^4 theory we present solutions to the constraint equation using a Tamm-Dancoff truncation to a finite number of particles and modes. We study the behavior of the zero mode as a function of coupling and Fock space truncation. The zero mode introduces new interactions into the Hamiltonian which breaks the Z2Z_2 symmetry of the theory when the coupling is stronger than the critical coupling.Comment: 25 page

    Contrast Leakage Patterns from Dynamic Susceptibility Contrast Perfusion MRI in the Grading of Primary Pediatric Brain Tumors

    Get PDF
    BACKGROUND AND PURPOSE: The pattern of contrast leakage from DSC tissue signal intensity time curves have shown utility in distinguishing adult brain neoplasms, but has limited description in the literature for pediatric brain tumors. The purpose of this study is to evaluate the utility of grading pediatric brain tumors with this technique. MATERIALS AND METHODS: A retrospective review of tissue signal-intensity time curves from 63 pediatric brain tumors with preoperative DSC perfusion MR imaging was performed independently by 2 neuroradiologists. Tissue signal-intensity time curves were generated from ROIs placed in the highest perceived tumor relative CBV. The postbolus portion of the curve was independently classified as returning to baseline, continuing above baseline (T1-dominant contrast leakage), or failing to return to baseline (T2*-dominant contrast leakage). Interobserver agreement of curve classification was evaluated by using the Cohen κ. A consensus classification of curve type was obtained in discrepant cases, and the consensus classification was compared with tumor histology and World Health Organization grade. RESULTS: Tissue signal-intensity time curve classification concordance was 0.69 (95% CI, 0.54–0.84) overall and 0.79 (95% CI, 0.59–0.91) for a T1-dominant contrast leakage pattern. Twenty-five of 25 tumors with consensus T1-dominant contrast leakage were low-grade (positive predictive value, 1.0; 95% CI, 0.83–1.00). By comparison, tumors with consensus T2*-dominant contrast leakage or return to baseline were predominantly high-grade (10/15 and 15/23, respectively) with a high negative predictive value (1.0; 95% CI, 0.83–1.0). For pilomyxoid or pilocytic astrocytomas, a T1-dominant leak demonstrated high sensitivity (0.91; 95% CI, 0.70–0.98) and specificity (0.90, 95% CI, 0.75–0.97). CONCLUSIONS: There was good interobserver agreement in the classification of DSC perfusion tissue signal-intensity time curves for pediatric brain tumors, particularly for T1-dominant leakage. Among patients with pediatric brain tumors, a T1-dominant leakage pattern is highly specific for a low-grade tumor and demonstrates high sensitivity and specificity for pilocytic or pilomyxoid astrocytomas
    corecore