4,126 research outputs found

    Dephasing of Electrons on Helium by Collisions with Gas Atoms

    Full text link
    The damping of quantum effects in the transport properties of electrons deposited on a surface of liquid helium is studied. It is found that due to vertical motion of the helium vapour atoms the interference of paths of duration tt is damped by a factor expβ‘βˆ’(t/Ο„v)3\exp - (t/\tau_v)^3. An expression is derived for the weak-localization lineshape in the case that damping occurs by a combination of processes with this type of cubic exponential damping and processes with a simple exponential damping factor.Comment: 7 pages, 2 figures, Revte

    Cdc53p acts in concert with Cdc4p and Cdc34p to control the G1 to S phase transition and identifies a conserved family of proteins

    Get PDF
    Regulation of cell cycle progression occurs in part through the targeted degradation of both activating and inhibitory subunits of the cyclin-dependent kinases. During G1, CDC4, encoding a WD-40 repeat protein, and CDC34, encoding a ubiquitin-conjugating enzyme, are involved in the destruction of these regulators. Here we describe evidence indicating that CDC53 also is involved in this process. Mutations in CDC53 cause a phenotype indistinguishable from those of cdc4 and cdc34 mutations, numerous genetic interactions are seen between these genes, and the encoded proteins are found physically associated in vivo. Cdc53p defines a large family of proteins found in yeasts, nematodes, and humans whose molecular functions are uncharacterized. These results suggest a role for this family of proteins in regulating cell cycle proliferation through protein degradation

    Fundamental approach for optoelectronic and microfluidic integration for miniaturizing spectroscopic devices

    Get PDF
    We have described an approach for miniaturizing spectroscopic devices by using the advantages presented by elastomeric based microfluidics and semiconductor detectors/emitters. Elastomers allow for both absorption and fluorescent spectroscopy in the visible range to be conducted on small volumes of solution and allow for easy integration with existing detectors such as CMOS imagers, CCD imagers, and silicon photodiodes. Results of some basic experiments are presented to demonstrate the effectiveness of the system. In addition, several ideas for emission sources are also discussed with their relevance yet to be determined

    Exploring Cognitive States: Methods for Detecting Physiological Temporal Fingerprints

    Get PDF
    Cognitive state detection and its relationship to observable physiologically telemetry has been utilized for many human-machine and human-cybernetic applications. This paper aims at understanding and addressing if there are unique psychophysiological patterns over time, a physiological temporal fingerprint, that is associated with specific cognitive states. This preliminary work involves commercial airline pilots completing experimental benchmark task inductions of three cognitive states: 1) Channelized Attention (CA); 2) High Workload (HW); and 3) Low Workload (LW). We approach this objective by modeling these "fingerprints" through the use of Hidden Markov Models and Entropy analysis to evaluate if the transitions over time are complex or rhythmic/predictable by nature. Our results indicate that cognitive states do have unique complexity of physiological sequences that are statistically different from other cognitive states. More specifically, CA has a significantly higher temporal psychophysiological complexity than HW and LW in EEG and ECG telemetry signals. With regards to respiration telemetry, CA has a lower temporal psychophysiological complexity than HW and LW. Through our preliminary work, addressing this unique underpinning can inform whether these underlying dynamics can be utilized to understand how humans transition between cognitive states and for improved detection of cognitive states
    • …
    corecore