95 research outputs found

    A Locally Adaptive Regularization Based on Anisotropic Diffusion for Deformable Image Registration of Sliding Organs

    Get PDF
    We propose a deformable image registration algorithm that uses anisotropic smoothing for regularization to find correspondences between images of sliding organs. In particular, we apply the method for respiratory motion estimation in longitudinal thoracic and abdominal computed tomography scans. The algorithm uses locally adaptive diffusion tensors to determine the direction and magnitude with which to smooth the components of the displacement field that are normal and tangential to an expected sliding boundary. Validation was performed using synthetic, phantom, and 14 clinical datasets, including the publicly available DIR-Lab dataset. We show that motion discontinuities caused by sliding can be effectively recovered, unlike conventional regularizations that enforce globally smooth motion. In the clinical datasets, target registration error showed improved accuracy for lung landmarks compared to the diffusive regularization. We also present a generalization of our algorithm to other sliding geometries, including sliding tubes (e.g., needles sliding through tissue, or contrast agent flowing through a vessel). Potential clinical applications of this method include longitudinal change detection and radiotherapy for lung or abdominal tumours, especially those near the chest or abdominal wall

    Neuroimaging of structural pathology and connectomics in traumatic brain injury: Toward personalized outcome prediction.

    Get PDF
    Recent contributions to the body of knowledge on traumatic brain injury (TBI) favor the view that multimodal neuroimaging using structural and functional magnetic resonance imaging (MRI and fMRI, respectively) as well as diffusion tensor imaging (DTI) has excellent potential to identify novel biomarkers and predictors of TBI outcome. This is particularly the case when such methods are appropriately combined with volumetric/morphometric analysis of brain structures and with the exploration of TBI-related changes in brain network properties at the level of the connectome. In this context, our present review summarizes recent developments on the roles of these two techniques in the search for novel structural neuroimaging biomarkers that have TBI outcome prognostication value. The themes being explored cover notable trends in this area of research, including (1) the role of advanced MRI processing methods in the analysis of structural pathology, (2) the use of brain connectomics and network analysis to identify outcome biomarkers, and (3) the application of multivariate statistics to predict outcome using neuroimaging metrics. The goal of the review is to draw the community's attention to these recent advances on TBI outcome prediction methods and to encourage the development of new methodologies whereby structural neuroimaging can be used to identify biomarkers of TBI outcome

    Mapping Microvasculature with Acoustic Angiography Yields Quantifiable Differences between Healthy and Tumor-bearing Tissue Volumes in a Rodent Model

    Get PDF
    To determine if the morphologies of microvessels could be extracted from contrast material–enhanced acoustic angiographic ultrasonographic (US) images and used as a quantitative basis for distinguishing healthy from diseased tissue

    Registration and Analysis of Vascular Images

    Get PDF
    We have developed a method for rigidly aligning images of tubes. This paper presents an evaluation of the consistency of that method for three-dimensional images of human vasculature. Vascular images may contain alignment ambiguities, poorly corresponding vascular networks, and non-rigid deformations, yet the Monte Carlo experiments presented in this paper show that our method provides registrations with sub-voxel consistency in less than one minute. Our registration method builds on the principals of our ridges-and-widths tube modeling work; this registration method operates by aligning models of the tubes in a source image with subsequent target images. The registration method’s consistency results from incorporate multi-scale ridge and width measures into the model-image match metric. The method’s speed comes from the use of coarse-to-fine registration strategies that are directly enabled by our tube models and the model-image match metric. In this paper we also show that the method’s insensitivity to local, non-rigid deformations enables the visualization and quantification of the effects of such deformations

    The effects of healthy aging on intracerebral blood vessels visualized by magnetic resonance angiography

    Get PDF
    Histological and magnetic resonance imaging studies have demonstrated that age-associated alterations of the human brain may be at least partially related to vascular alterations. Relatively little information has been published on vascular changes associated with healthy aging, however. The study presented in this paper examined vessels segmented from standardized, high-resolution, magnetic resonance angiograms (MRA) of 100 healthy volunteers (50 males, 50 females), aged 18-74, without hypertension or other disease likely to affect the vasculature. The subject sample was divided into 5 age groups (n=20/group) with gender equally distributed per group. The anterior cerebral, both middle cerebral, and the posterior circulations were examined for vessel number, vessel radius, and vessel tortuosity. Males exhibited larger vessel radii regardless of age and across all anatomical regions. Both males and females displayed a lower number of MRA-discernible vessels with age, most marked in the posterior circulation. Age-associated tortuosity increases were relatively mild. Our multi-modal image database has been made publicly available for use by other investigators

    Quantification of Microvascular Tortuosity during Tumor Evolution Using Acoustic Angiography

    Get PDF
    The recent design of ultra-broadband, multi-frequency ultrasound transducers has enabled high sensitivity, high-resolution contrast imaging, with very efficient suppression of tissue background using a technique called acoustic angiography. Here we perform the first application of acoustic angiography to evolving tumors in mice predisposed to develop mammary carcinoma, with the intent of visualizing and quantifying angiogenesis progression associated with tumor growth. Metrics compared include vascular density and two measures of vessel tortuosity quantified from segmentations of vessels traversing and surrounding 24 tumors and abdominal vessels from control mice. Quantitative morphological analysis of tumor vessels demonstrated significantly increased vascular tortuosity abnormalities associated with tumor growth with the distance metric elevated approximately 14% and the sum of angles metric increased 60% in tumor vessels versus controls. Future applications of this imaging approach may provide clinicians a new tool in tumor detection, differentiation, or evaluation, though with limited depth of penetration using the current configuration
    • …
    corecore