Quantification of Microvascular Tortuosity during Tumor Evolution Using Acoustic Angiography

Abstract

The recent design of ultra-broadband, multi-frequency ultrasound transducers has enabled high sensitivity, high-resolution contrast imaging, with very efficient suppression of tissue background using a technique called acoustic angiography. Here we perform the first application of acoustic angiography to evolving tumors in mice predisposed to develop mammary carcinoma, with the intent of visualizing and quantifying angiogenesis progression associated with tumor growth. Metrics compared include vascular density and two measures of vessel tortuosity quantified from segmentations of vessels traversing and surrounding 24 tumors and abdominal vessels from control mice. Quantitative morphological analysis of tumor vessels demonstrated significantly increased vascular tortuosity abnormalities associated with tumor growth with the distance metric elevated approximately 14% and the sum of angles metric increased 60% in tumor vessels versus controls. Future applications of this imaging approach may provide clinicians a new tool in tumor detection, differentiation, or evaluation, though with limited depth of penetration using the current configuration

    Similar works