2,790 research outputs found
Estimating Jones and HOMFLY polynomials with One Clean Qubit
The Jones and HOMFLY polynomials are link invariants with close connections
to quantum computing. It was recently shown that finding a certain
approximation to the Jones polynomial of the trace closure of a braid at the
fifth root of unity is a complete problem for the one clean qubit complexity
class. This is the class of problems solvable in polynomial time on a quantum
computer acting on an initial state in which one qubit is pure and the rest are
maximally mixed. Here we generalize this result by showing that one clean qubit
computers can efficiently approximate the Jones and single-variable HOMFLY
polynomials of the trace closure of a braid at any root of unity.Comment: 22 pages, 11 figures, revised in response to referee comment
Adiabatic optimization without local minima
Several previous works have investigated the circumstances under which
quantum adiabatic optimization algorithms can tunnel out of local energy minima
that trap simulated annealing or other classical local search algorithms. Here
we investigate the even more basic question of whether adiabatic optimization
algorithms always succeed in polynomial time for trivial optimization problems
in which there are no local energy minima other than the global minimum.
Surprisingly, we find a counterexample in which the potential is a single basin
on a graph, but the eigenvalue gap is exponentially small as a function of the
number of vertices. In this counterexample, the ground state wavefunction
consists of two "lobes" separated by a region of exponentially small amplitude.
Conversely, we prove if the ground state wavefunction is single-peaked then the
eigenvalue gap scales at worst as one over the square of the number of
vertices.Comment: 20 pages, 1 figure. Journal versio
Partial-indistinguishability obfuscation using braids
An obfuscator is an algorithm that translates circuits into
functionally-equivalent similarly-sized circuits that are hard to understand.
Efficient obfuscators would have many applications in cryptography. Until
recently, theoretical progress has mainly been limited to no-go results. Recent
works have proposed the first efficient obfuscation algorithms for classical
logic circuits, based on a notion of indistinguishability against
polynomial-time adversaries. In this work, we propose a new notion of
obfuscation, which we call partial-indistinguishability. This notion is based
on computationally universal groups with efficiently computable normal forms,
and appears to be incomparable with existing definitions. We describe universal
gate sets for both classical and quantum computation, in which our definition
of obfuscation can be met by polynomial-time algorithms. We also discuss some
potential applications to testing quantum computers. We stress that the
cryptographic security of these obfuscators, especially when composed with
translation from other gate sets, remains an open question.Comment: 21 pages,Proceedings of TQC 201
Yang-Baxter operators need quantum entanglement to distinguish knots
Any solution to the Yang-Baxter equation yields a family of representations
of braid groups. Under certain conditions, identified by Turaev, the
appropriately normalized trace of these representations yields a link
invariant. Any Yang-Baxter solution can be interpreted as a two-qudit quantum
gate. Here we show that if this gate is non-entangling, then the resulting
invariant of knots is trivial. We thus obtain a general connection between
topological entanglement and quantum entanglement, as suggested by Kauffman et
al.Comment: 12 pages, 2 figure
- …