1,068 research outputs found

    Recent Cosmic-Ray Antiproton Measurements and Astrophysical Implications

    Get PDF
    Cosmic-ray antiprotons have been detected by a new balloon-borne experiment which covers the energy range between 130 and 320 MeV. Fourteen detected events yield a measured flux of 1.7±0.5 x 10^(-4) antiprotons m^(-2) sr^(-1) s(-1) MeV^(-1). The corresponding antiproton/proton ratio is 2.2± 0.6 x 10^(-4), only slightly smaller than the ratio observed by other experiments at higher energies. The measured flux is significantly larger than predicted, and some cosmic-ray models which could explain this result are discussed

    Position Measurements for Heavy Ion Beams Using a Sodium Iodide Scintillator

    Get PDF
    A 50 cm diameter, 1.7 cm thick disc of NaI(Tl) scintillator has been mounted to permit edge viewing by four photomultipliers. Energetic heavy ions passing through the scintillator at different positions cause a variation in the division of light among the photomultipliers. We have achieved a performance close to the expected limit for 670 MeV/n· ·neon. Calculations of expected response using an optical model agree well with the measurements

    Effects of Bulk and Surface Conductivity on the Performance of CdZnTe Pixel Detectors

    Get PDF
    We studied the effects of bulk and surface conductivity on the performance of high-resistivity CdZnTe (CZT) pixel detectors with Pt contacts. We emphasize the difference in mechanisms of the bulk and surface conductivity as indicated by their different temperature behaviors. In addition, the existence of a thin (10-100 A) oxide layer on the surface of CZT, formed during the fabrication process, affects both bulk and surface leakage currents. We demonstrate that the measured I-V dependencies of bulk current can be explained by considering the CZT detector as a metal-semiconductor-metal system with two back-to-back Schottky-barrier contacts. The high surface leakage current is apparently due to the presence of a low-resistivity surface layer that has characteristics which differ considerably from those of the bulk material. This surface layer has a profound effect on the charge collection efficiency in detectors with multi-contact geometry; some fraction of the electric field lines originated on the cathode intersects the surface areas between the pixel contacts where the charge produced by an ionizing particle gets trapped. To overcome this effect we place a grid of thin electrodes between the pixel contacts; when the grid is negatively biased, the strong electric field in the gaps between the pixels forces the electrons landing on the surface to move toward the contacts, preventing the charge loss. We have investigated these effects by using CZT pixel detectors indium bump bonded to a custom-built VLSI readout chip

    A Measurement of the Cosmic-Ray Antiproton Flux and a Search for Antihelium

    Get PDF
    A balloon-borne instrument has measured the cosmic-ray antiproton flux between 130 and 320 MeV and searched for antihelium between 130 and 370 MeV per nuclear. These particles were selected from the background of normal-matter cosmic rays by combining a selective trigger with a detailed spark chamber visualization of each recorded event. Antiprotons are identified by their characteristic annihilation radiation. Residue from background processes meeting the selection criteria is small. The observed 14 antiprotons yield a measured differential flux of 1.7±0.5X 10^(-4) antiprotons m^(-2) sr(-1) s^(-1)i Mev^(-1) at the top of the atmosphere. The corresponding antiproton/pro-ton ratio is 2.2±0.6X10^(-4), only slightly smaller than the ratio observed by other experiments at higher energies. Thus the antiprotons have a spectral shape similar to the protons, at least down to about 100 MeV. The expected flux of these particles can be calculated under the assumption that they were created by collisions of high-energy cosmic rays with the interstellar gas. Calculations using the standard leaky box model for propagation in the Galaxy predict a flux two orders of magnitude smaller than that observed. A small low-energy flux is predicted due to a kinematic suppression of the production of low-energy antiprotons. The discrepancy between calculations and experiment may be evidence that cosmic-ray protons have passed through substantially more than 5 g cm^(-2) of material during their lifetime. In addition, the combined results from this experiment and previous ones may be evidence for stochastic, energy-changing processes in interstellar space which act upon the secondary antiprotons after their creation. The search for cosmic-ray antihelium sets a 95% confidence level upper limit on the He /He ratio of 2.2 X 10^(-5)

    Characterization of the HEFT CdZnTe pixel detectors

    Get PDF
    We have developed large format CdZnTe pixel detectors optimized for astrophysical applications. The detectors, designed for the High Energy Focusing Telescope (HEFT) balloon experiment, each consists of an array of 24x44 pixels, on a 498 μm pitch. Each of the anode segments on a CdZnTe sensor is bonded to a custom, low-noise application-specific integrated circuit (ASIC)optimized to achieve low threshold and good energy resolution. We have studied detectors fabricated by two different bonding methods and corresponding anode plane designs---the first detector has a steering electrode grid, and is bonded to the ASIC with indium bumps; the second detector has no grid but a narrower gap between anode contacts, and is bonded to the ASIC with conductive epoxy bumps and gold stud bumps in series. In this paper, we present results from detailed X-ray testing of the HEFT pixel detectors. This includes measurements of the energy resolution for both single-pixel and split-pixel events, and characterization of the effects of charge trapping, electrode biases and temperature on the spectral performance. Detectors from the two bonding methods are contrasted

    Properties of Pt Schottky Type Contacts On High-Resistivity CdZnTe Detectors

    Get PDF
    In this paper we present studies of the I-V characteristics of CdZnTe detectors with Pt contacts fabricated from high-resistivity single crystals grown by the high-pressure Brigman process. We have analyzed the experimental I-V curves using a model that approximates the CZT detector as a system consisting of a reversed Schottky contact in series with the bulk resistance. Least square fits to the experimental data yield 0.78-0.79 eV for the Pt-CZT Schottky barrier height, and <20 V for the voltage required to deplete a 2 mm thick CZT detector. We demonstrate that at high bias the thermionic current over the Schottky barrier, the height of which is reduced due to an interfacial layer between the contact and CZT material, controls the leakage current of the detectors. In many cases the dark current is not determined by the resistivity of the bulk material, but rather the properties of the contacts; namely by the interfacial layer between the contact and CZT material.Comment: 12 pages, 11 figure

    CdZnTe Image Detectors for Hard-X-Ray Telescopes

    Get PDF
    Arrays of CdZnTe photodetectors and associated electronic circuitry have been built and tested in a continuing effort to develop focal-plane image sensor systems for hard-x-ray telescopes. Each array contains 24 by 44 pixels at a pitch of 498 m. The detector designs are optimized to obtain low power demand with high spectral resolution in the photon- energy range of 5 to 100 keV. More precisely, each detector array is a hybrid of a CdZnTe photodetector array and an application-specific integrated circuit (ASIC) containing an array of amplifiers in the same pixel pattern as that of the detectors. The array is fabricated on a single crystal of CdZnTe having dimensions of 23.6 by 12.9 by 2 mm. The detector-array cathode is a monolithic platinum contact. On the anode plane, the contact metal is patterned into the aforementioned pixel array, surrounded by a guard ring that is 1 mm wide on three sides and is 0.1 mm wide on the fourth side so that two such detector arrays can be placed side-by-side to form a roughly square sensor area with minimal dead area between them. Figure 1 shows two anode patterns. One pattern features larger pixel anode contacts, with a 30-m gap between them. The other pattern features smaller pixel anode contacts plus a contact for a shaping electrode in the form of a grid that separates all the pixels. In operation, the grid is held at a potential intermediate between the cathode and anode potentials to steer electric charges toward the anode in order to reduce the loss of charges in the inter-anode gaps. The CdZnTe photodetector array is mechanically and electrically connected to the ASIC (see Figure 2), either by use of indium bump bonds or by use of conductive epoxy bumps on the CdZnTe array joined to gold bumps on the ASIC. Hence, the output of each pixel detector is fed to its own amplifier chain

    a clinical study protocol

    Get PDF
    Introduction The approved analgesic and anti-inflammatory drugs ibuprofen and indometacin block the small GTPase RhoA, a key enzyme that impedes axonal sprouting after axonal damage. Inhibition of the Rho pathway in a central nervous system-effective manner requires higher dosages compared with orthodox cyclooxygenase-blocking effects. Preclinical studies on spinal cord injury (SCI) imply improved motor recovery after ibuprofen/indometacin-mediated Rho inhibition. This has been reassessed by a meta-analysis of the underlying experimental evidence, which indicates an overall effect size of 20.2% regarding motor outcome achieved after ibuprofen/indometacin treatment compared with vehicle controls. In addition, ibuprofen/indometacin may also limit sickness behaviour, non-neurogenic systemic inflammatory response syndrome (SIRS), neuropathic pain and heterotopic ossifications after SCI. Consequently, ‘small molecule’-mediated Rho inhibition after acute SCI warrants clinical investigation. Methods and analysis Protocol of an investigator-initiated clinical open-label pilot trial on high-dose ibuprofen treatment after acute traumatic, motor-complete SCI. A sample of n=12 patients will be enrolled in two cohorts treated with 2400 mg/day ibuprofen for 4 or 12 weeks, respectively. The primary safety end point is an occurrence of serious adverse events, primarily gastroduodenal bleedings. Secondary end points are pharmacokinetics, feasibility and preliminary effects on neurological recovery, neuropathic pain and heterotopic ossifications. The primary safety analysis is based on the incidence of severe gastrointestinal bleedings. Additional analyses will be mainly descriptive and casuistic. Ethics and dissemination The clinical trial protocol was approved by the responsible German state Ethics Board, and the Federal Institute for Drugs and Medical Devices. The study complies with the Declaration of Helsinki, the principles of Good Clinical Practice and all further applicable regulations. This safety and pharmacokinetics trial informs the planning of a subsequent randomised controlled trial. Regardless of the result of the primary and secondary outcome assessments, the clinical trial will be reported as a publication in a peer-reviewed journal. Trial registration number NCT02096913; Pre-results

    Coded-aperture imaging of the galactic center region at gamma-ray energies

    Get PDF
    The first coded-aperture images of the Galactic center region at energies above 30 keV have revealed two strong y-ray sources. One source has been identified with the X-ray source 1E 1740.7-2942, located 0°.8 away from the nucleus. If this source is at the distance of the Galactic center, it is one of the most luminous objects in the galaxy at energies from 35 to 200 keV. The second source is consistent in location with the X-ray source GX 354 + 0 (MXB 1728- 34). In addition, y-ray flux from the location of GX 1 + 4 was marginally detected at a level consistent with other post-1980 measurements. No significant hard X-ray or γ-ray flux was detected from the direction of the Galactic nucleus (Sgr A*), or from the direction of the recently discovered γ-ray source GRS 1758-258

    Characterization of the HEFT CdZnTe pixel detectors

    Get PDF
    We have developed large format CdZnTe pixel detectors optimized for astrophysical applications. The detectors, designed for the High Energy Focusing Telescope (HEFT) balloon experiment, each consists of an array of 24x44 pixels, on a 498 μm pitch. Each of the anode segments on a CdZnTe sensor is bonded to a custom, low-noise application-specific integrated circuit (ASIC)optimized to achieve low threshold and good energy resolution. We have studied detectors fabricated by two different bonding methods and corresponding anode plane designs---the first detector has a steering electrode grid, and is bonded to the ASIC with indium bumps; the second detector has no grid but a narrower gap between anode contacts, and is bonded to the ASIC with conductive epoxy bumps and gold stud bumps in series. In this paper, we present results from detailed X-ray testing of the HEFT pixel detectors. This includes measurements of the energy resolution for both single-pixel and split-pixel events, and characterization of the effects of charge trapping, electrode biases and temperature on the spectral performance. Detectors from the two bonding methods are contrasted
    corecore