25 research outputs found

    Identification of Novel Antimalarial Chemotypes via Chemoinformatic Compound Selection Methods for a High-Throughput Screening Program against the Novel Malarial Target, PfNDH2: Increasing Hit Rate via Virtual Screening Methods

    Get PDF
    Malaria is responsible for approximately 1 million deaths annually; thus, continued efforts to discover new antimalarials are required. A HTS screen was established to identify novel inhibitors of the parasite's mitochondrial enzyme NADH:quinone oxidoreductase (PfNDH2). On the basis of only one known inhibitor of this enzyme, the challenge was to discover novel inhibitors of PfNDH2 with diverse chemical scaffolds. To this end, using a range of ligand-based chemoinformatics methods, ~17000 compounds were selected from a commercial library of ~750000 compounds. Forty-eight compounds were identified with PfNDH2 enzyme inhibition IC(50) values ranging from 100 nM to 40 μM and also displayed exciting whole cell antimalarial activity. These novel inhibitors were identified through sampling 16% of the available chemical space, while only screening 2% of the library. This study confirms the added value of using multiple ligand-based chemoinformatic approaches and has successfully identified novel distinct chemotypes primed for development as new agents against malaria

    Pericytes Derived from Adipose-Derived Stem Cells Protect against Retinal Vasculopathy

    Get PDF
    <div><p>Background</p><p>Retinal vasculopathies, including diabetic retinopathy (DR), threaten the vision of over 100 million people. Retinal pericytes are critical for microvascular control, supporting retinal endothelial cells via direct contact and paracrine mechanisms. With pericyte death or loss, endothelial dysfunction ensues, resulting in hypoxic insult, pathologic angiogenesis, and ultimately blindness. Adipose-derived stem cells (ASCs) differentiate into pericytes, suggesting they may be useful as a protective and regenerative cellular therapy for retinal vascular disease. In this study, we examine the ability of ASCs to differentiate into pericytes that can stabilize retinal vessels in multiple pre-clinical models of retinal vasculopathy.</p><p>Methodology/Principal Findings</p><p>We found that ASCs express pericyte-specific markers <i>in vitro</i>. When injected intravitreally into the murine eye subjected to oxygen-induced retinopathy (OIR), ASCs were capable of migrating to and integrating with the retinal vasculature. Integrated ASCs maintained marker expression and pericyte-like morphology <i>in vivo</i> for at least 2 months. ASCs injected after OIR vessel destabilization and ablation enhanced vessel regrowth (16% reduction in avascular area). ASCs injected intravitreally before OIR vessel destabilization prevented retinal capillary dropout (53% reduction). Treatment of ASCs with transforming growth factor beta (TGF-β1) enhanced hASC pericyte function, in a manner similar to native retinal pericytes, with increased marker expression of smooth muscle actin, cellular contractility, endothelial stabilization, and microvascular protection in OIR. Finally, injected ASCs prevented capillary loss in the diabetic retinopathic Akimba mouse (79% reduction 2 months after injection).</p><p>Conclusions/Significance</p><p>ASC-derived pericytes can integrate with retinal vasculature, adopting both pericyte morphology and marker expression, and provide functional vascular protection in multiple murine models of retinal vasculopathy. The pericyte phenotype demonstrated by ASCs is enhanced with TGF-β1 treatment, as seen with native retinal pericytes. ASCs may represent an innovative cellular therapy for protection against and repair of DR and other retinal vascular diseases.</p></div

    Property and wealth inequality as cultural niche construction

    No full text
    In contrast to other approaches, evolutionary perspectives on understanding the power and wealth inequalities in human societies view wealth and power not as ends in themselves but as proximate goals that contribute to the ultimate Darwinian goal of achieving reproductive success. The most successful means of achieving it in specific times and places depend on local conditions and these have changed in the course of human history, to such an extent that strategies focused on the maintenance and increase of wealth can even be more successful in reproductive terms than strategies directed at maximizing reproductive success in the short term. This paper argues that a major factor leading to such changes is a shift in the nature of inter-generational wealth transfers from relatively intangible to material property resources and the opportunities these provided for massively increased inequality. This shift can be seen as a process of niche construction related to the increasing importance of fixed and defensible resources in many societies after the end of the last Ice Age. It is suggested that, despite problems of inference, the evidence of the archaeological record can be used to throw light on these processes in specific places and times
    corecore