11 research outputs found

    Symbiotic modeling: Linguistic Anthropology and the promise of chiasmus

    Get PDF
    Reflexive observations and observations of reflexivity: such agendas are by now standard practice in anthropology. Dynamic feedback loops between self and other, cause and effect, represented and representamen may no longer seem surprising; but, in spite of our enhanced awareness, little deliberate attention is devoted to modeling or grounding such phenomena. Attending to both linguistic and extra-linguistic modalities of chiasmus (the X figure), a group of anthropologists has recently embraced this challenge. Applied to contemporary problems in linguistic anthropology, chiasmus functions to highlight and enhance relationships of interdependence or symbiosis between contraries, including anthropology’s four fields, the nature of human being and facets of being human

    Pendrin, a Novel Transcriptional Target of the Uroguanylin System

    No full text
    Guanylin (GN) and uroguanylin (UGN) are low-molecular-weight peptide hormones produced mainly in the intestinal mucosa in response to oral salt load. GN and UGN (guanylin peptides) induce secretion of electrolytes and water in both intestine and kidney. Thought to act as “intestinal natriuretic factors”, GN and UGN modulate renal salt secretion by both endocrine mechanisms (linking the digestive system and kidney) and paracrine/autocrine (intrarenal) mechanisms. The cellular function of GN and UGN in intestine and proximal tubule is mediated by guanylyl cyclase C (GC-C)-, cGMP-, and G protein-dependent pathways, whereas, in principal cells of the cortical collecting duct (CCD), these peptide hormones act via GC-C-independent signaling through phospholipase A2 (PLA2). The Cl-/HCO-3 exchanger pendrin (SLC26A4), encoded by the PDS gene, is expressed in non-α intercalated cells of the CCD. Pendrin is essential for CCD bicarbonate secretion and is also involved in NaCl balance and blood pressure regulation. Our recent studies have provided evidence that pendrin-mediated anion exchange in the CCD is regulated at the transcriptional level by UGN. UGN exerts an inhibitory effect on the pendrin gene promoter likely via heat shock factor 1 (HSF1) action at a defined heat shock element (HSE) site. Recent studies have unraveled novel roles for guanylin peptides in several organ systems including involvement in appetite regulation, olfactory function, cell proliferation and differentiation, inflammation, and reproductive function. Both the guanylin system and pendrin have also been implicated in airway function. Future molecular research into the receptors and signal transduction pathways involved in the action of guanylin peptides and the pendrin anion exchanger in the kidney and other organs, and into the links between them, may facilitate discovery of new therapies for hypertension, heart failure, hepatic failure and other fluid retention syndromes, as well as for diverse diseases such as obesity, asthma, and cancer

    Harmonizing Diversity: Tuning Anthropological Research to Complexity

    Get PDF
    The contributions in this issue of Social Science Computer Review represent a range of computational approaches to theoretical and disciplinary specializations in anthropology that reflect on and expand the future orientation and practice of the formal and comparative agenda in the context of an increasing emphasis on complexity in anthropology as a discipline. Themes covered in this issue include kinship, funerary burials, urban legends, eye tracking and looking at mode influences on online data collection. A common theme throughout the papers is examining the relationship between global emergent processes and structures and the local individual contributions to this emergence, and how the local and global contexts influence each other. We argue that unless complexity is addressed more overtly by leveraging computational approaches to data collection, analysis and theory building, anthropology and social science more generally face an existential challenge if they are to continue to pursue extended field research exercise, intersubjective productions, deep personal involvement, interaction with materiality and engagement with people whilst generating research outcomes of relevance to the world beyond the narrow confines of specialist journals and conferences

    Agonist-Specific Compartmentation of cGMP Action in Myometrium

    No full text
    Nitric oxide relaxes myometrium in a cGMP-independent manner. Although cGMP activates its cognate kinase, this is not required for the inhibitory effect of nitric oxide. Thus, nitric oxide-mediated cGMP elevation does not enjoy the same set of substrates as it does in other smooth muscles. To further understand the regulation of relaxation of uterine muscle by cGMP, we have studied the actions of peptide-mediated cGMP action in guinea pig myometrium. We used both functional and biochemical studies of the action of the particulate guanylyl cyclase activator uroguanylin and its receptor, particulate guanylyl cyclase type C, to address the relationship between cGMP elevation acting in the membrane signaling domain to that of the nonmembrane region of the cell. Uroguanylin relaxed oxytocin-induced contractions in a dose-dependent fashion only in pregnant myometrium. Both relaxation and cGMP accumulation after uroguanylin stimulation were blocked by the putative particulate guanylyl cyclase type C inhibitors 2-chloro-ATP and isatin (1H-indole-2,3-dione), but not by the soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-A]quinoxalin-1-one (ODQ). Uroguanylin stimulated cGMP accumulation only in the pregnant myometrium. Caveolin-1 expression increased in pregnancy toward term. In the caveolin-1-containing membrane domain, uroguanylin, but not the nitric-oxide donor, led to the elevation of cGMP that was insensitive to ODQ. Particulate guanylyl cyclase C was expressed and prouroguanylin was detected in pregnant myometrium. We conclude that a uroguanylin–particulate cyclase-cGMP relaxation pathway is present and cGMP is compartmented in myometrium. The agonist-mediated selectivity of relaxation to cGMP is of fundamental pharmacological interest in understanding signal transduction in smooth muscle
    corecore