105 research outputs found

    Plus Γ§a change - evolutionary sequence divergence predicts protein subcellular localization signals

    Get PDF
    Background: Protein subcellular localization is a central problem in understanding cell biology and has been the focus of intense research. In order to predict localization from amino acid sequence a myriad of features have been tried: including amino acid composition, sequence similarity, the presence of certain motifs or domains, and many others. Surprisingly, sequence conservation of sorting motifs has not yet been employed, despite its extensive use for tasks such as the prediction of transcription factor binding sites.Results: Here, we flip the problem around, and present a proof of concept for the idea that the lack of sequence conservation can be a novel feature for localization prediction. We show that for yeast, mammal and plant datasets, evolutionary sequence divergence alone has significant power to identify sequences with N-terminal sorting sequences. Moreover sequence divergence is nearly as effective when computed on automatically defined ortholog sets as on hand curated ones. Unfortunately, sequence divergence did not necessarily increase classification performance when combined with some traditional sequence features such as amino acid composition. However a post-hoc analysis of the proteins in which sequence divergence changes the prediction yielded some proteins with atypical (i.e. not MPP-cleaved) matrix targeting signals as well as a few misannotations.Conclusion: We report the results of the first quantitative study of the effectiveness of evolutionary sequence divergence as a feature for protein subcellular localization prediction. We show that divergence is indeed useful for prediction, but it is not trivial to improve overall accuracy simply by adding this feature to classical sequence features. Nevertheless we argue that sequence divergence is a promising feature and show anecdotal examples in which it succeeds where other features fail. Β© 2014 Fukasawa et al.; licensee BioMed Central Ltd.Link_to_subscribed_fulltex

    Systematic Identification of Placental Epigenetic Signatures for the Noninvasive Prenatal Detection of Edwards Syndrome

    Get PDF
    Background: Noninvasive prenatal diagnosis of fetal aneuploidy by maternal plasma analysis is challenging owing to the low fractional and absolute concentrations of fetal DNA in maternal plasma. Previously, we demonstrated for the first time that fetal DNA in maternal plasma could be specifically targeted by epigenetic (DNA methylation) signatures in the placenta. By comparing one such methylated fetal epigenetic marker located on chromosome 21 with another fetal genetic marker located on a reference chromosome in maternal plasma, we could infer the relative dosage of fetal chromosome 21 and noninvasively detect fetal trisomy 21. Here we apply this epigenetic-genetic (EGG) chromosome dosage approach to detect Edwards syndrome (trisomy 18) in the fetus noninvasively. Principal Findings: We have systematically identified methylated fetal epigenetic markers on chromosome 18 by methylated DNA immunoprecipitation (MeDIP) and tiling array analysis with confirmation using quantitative DNA methylation assays. Methylated DNA sequences from an intergenic region between the VAPA and APCDD1 genes (the VAPAAPCDD1 DNA) were detected in pre-delivery, but not post-delivery, maternal plasma samples. The concentrations correlated positively with those of an established fetal genetic marker, ZFY, in pre-delivery maternal plasma. The ratios of methylated VAPA-APCDD1(chr18) to ZFY(chrY) were higher in maternal plasma samples of 9 male trisomy 18 fetuses than those of 27 male euploid fetuses (Mann-Whitney test, P = 0.029). We defined the cutoff value for detecting trisomy 18 fetuses as mean+1.96 SD of the EGG ratios of the euploid cases. Eight of 9 trisomy 18 and 1 of 27 euploid cases showed EGG ratios higher than the cutoff value, giving a sensitivity of 88.9% and a specificity of 96.3%. Conclusions: Our data have shown that the methylated VAPA-APCDD1 DNA in maternal plasma is redominantly derived from the fetus. We have demonstrated that this novel fetal epigenetic marker in maternal plasma is useful for the noninvasive detection of fetal trisomy 18. Β© Tsui et al.published_or_final_versio

    Identification of Human Papillomavirus Type 58 Lineages and the Distribution Worldwide

    Get PDF
    Background. Human papillomavirus type 58 (HPV-58) accounts for a much higher proportion of cervical cancers in East Asia than other types. A classification system of HPV-58, which is essential for molecular epidemiological study, is lacking. Methods and results. This study analyzed the sequences of 401 isolates collected from 15 countries and cities. The 268 unique concatenated E6-E7-E2-E5-L1-LCR sequences that comprised 57% of the whole HPV-58 genome showed 4 distinct clusters. L1 and LCR produced tree topologies that best resembled the concatenated sequences and thus are the most appropriate surrogate regions for lineage classification. Moreover, short fragments from L1 (nucleotides 6014–6539) and LCR (nucleotides 7257–7429 and 7540–52) were found to contain sequence signatures informative for lineage identification. Lineage A was the most prevalent lineage across all regions. Lineage C was more frequent in Africa than elsewhere, whereas lineage D was more prevalent in Africa than in Asia. Among lineage A variants, sublineage A2 dominated in Africa, the Americas, and Europe, but not in Asia. Sublineage A1, which represents the prototype that originated from a patient with cancer, was rare worldwide except in Asia. Conclusions. HPV-58 can be classified into 4 lineages that show some degree of ethnogeographic predilection in distribution. The evolutionary, epidemiological, and pathological characteristics of these lineages warrant further study

    Systematic Identification of Spontaneous Preterm Birth-Associated RNA Transcripts in Maternal Plasma

    Get PDF
    <div><h3>Background</h3><p>Spontaneous preterm birth (SPB, before 37 gestational weeks) is a major cause of perinatal mortality and morbidity, but its pathogenesis remains unclear. Studies on SPB have been hampered by the limited availability of markers for SPB in predelivery clinical samples that can be easily compared with gestational age-matched normal controls. We hypothesize that SPB involves aberrant placental RNA expression, and that such RNA transcripts can be detected in predelivery maternal plasma samples, which can be compared with gestational age-matched controls.</p> <h3>Principal Findings</h3><p>Using gene expression microarray to profile essentially all human genes, we observed that 426 probe signals were changed by >2.9-fold in the SPB placentas, compared with the spontaneous term birth (STB) placentas. Among the genes represented by those probes, we observed an over-representation of functions in RNA stabilization, extracellular matrix binding, and acute inflammatory response. Using RT-quantitative PCR, we observed differences in the RNA concentrations of certain genes only between the SPB and STB placentas, but not between the STB and term elective cesarean delivery placentas. Notably, 36 RNA transcripts were observed at placental microarray signals higher than a threshold, which indicated the possibility of their detection in maternal plasma. Among them, the <em>IL1RL1</em> mRNA was tested in plasma samples taken from 37 women. It was detected in 6 of 10 (60%) plasma samples collected during the presentation of preterm labor (≀32.9 weeks) in women eventually giving SPB, but was detected in only 1 of 27 (4%) samples collected during matched gestational weeks from women with no preterm labor (Fisher exact test, pβ€Š=β€Š0.00056).</p> <h3>Conclusion</h3><p>We have identified 36 SPB-associated RNA transcripts, which are possibly detectable in maternal plasma. We have illustrated that the <em>IL1RL1</em> mRNA was more frequently detected in predelivery maternal plasma samples collected from women resulting in SPB than the gestational-age matched controls.</p> </div

    Apolipoprotein M Gene (APOM) Polymorphism Modifies Metabolic and Disease Traits in Type 2 Diabetes

    Get PDF
    This study aimed at substantiating the associations of the apolipoproein M gene (APOM) with type 2 diabetes (T2D) as well as with metabolic traits in Hong Kong Chinese. In addition, APOM gene function was further characterized to elucidate its activity in cholesterol metabolism. Seventeen APOM SNPs documented in the NCBI database were genotyped. Five SNPs were confirmed in our study cohort of 1234 T2D and 606 control participants. Three of the five SNPs rs707921(C+1871A), rs707922(G+1837T) and rs805264(G+203A) were in linkage disequilibrium (LD). We chose rs707922 to tag this LD region for down stream association analyses and characterized the function of this SNP at molecular level. No association between APOM and T2D susceptibility was detected in our Hong Kong Chinese cohort. Interestingly, the C allele of rs805297 was significantly associated with T2D duration of longer than 10 years (ORβ€Š=β€Š1.245, pβ€Š=β€Š0.015). The rs707922 TT genotype was significantly associated with elevated plasma total- and LDL- cholesterol levels (pβ€Š=β€Š0.006 and pβ€Š=β€Š0.009, respectively) in T2D patients. Molecular analyses of rs707922 lead to the discoveries of a novel transcript APOM5 as well as the cryptic nature of exon 5 of the gene. Ectopic expression of APOM5 transcript confirmed rs707922 allele-dependent activity of the transcript in modifying cholesterol homeostasis in vitro. In conclusion, the results here did not support APOM as a T2D susceptibility gene in Hong Kong Chinese. However, in T2D patients, a subset of APOM SNPs was associated with disease duration and metabolic traits. Further molecular analysis proved the functional activity of rs707922 in APOM expression and in regulation of cellular cholesterol content

    Chinese students in a UK business school: hearing the student voice in reflective teaching and learning practice.

    Get PDF
    This paper presents the outcomes of a study carried out in 2001-2002 with nine postgraduate students from China, enrolled on taught master's programmes in a UK university business school. The aims of the research were to explore the development of the students' orientations to learning during their year of study in the UK, and to explore how the researcher's interactions with the study group contributed to her professional reflections and influenced her academic practice. The main conclusions of the project were that participants' underlying approaches to learning did not change substantially over the year, owing to the culturally implicit nature of UK academic conventions and that they experienced high levels of emotional isolation and loneliness, which affected their academic confidence

    The G1613A Mutation in the HBV Genome Affects HBeAg Expression and Viral Replication through Altered Core Promoter Activity

    Get PDF
    Infection of hepatitis B virus (HBV) causes acute and chronic hepatitis and is closely associated with the development of cirrhosis and hepatocellular carcinoma (HCC). Previously, we demonstrated that the G1613A mutation in the HBV negative regulatory element (NRE) is a hotspot mutation in HCC patients. In this study, we further investigated the functional consequences of this mutation in the context of the full length HBV genome and its replication. We showed that the G1613A mutation significantly suppresses the secretion of e antigen (HBeAg) and enhances the synthesis of viral DNA, which is in consistence to our clinical result that the G1613A mutation associates with high viral load in chronic HBV carriers. To further investigate the molecular mechanism of the mutation, we performed the electrophoretic mobility shift assay with the recombinant RFX1 protein, a trans-activator that was shown to interact with the NRE of HBV. Intriguingly, RFX1 binds to the G1613A mutant with higher affinity than the wild-type sequence, indicating that the mutation possesses the trans-activating effect to the core promoter via NRE. The trans-activating effect was further validated by the enhancement of the core promoter activity after overexpression of RFX1 in liver cell line. In summary, our results suggest the functional consequences of the hotspot G1613A mutation found in HBV. We also provide a possible molecular mechanism of this hotspot mutation to the increased viral load of HBV carriers, which increases the risk to HCC

    Multi-Scaled Explorations of Binding-Induced Folding of Intrinsically Disordered Protein Inhibitor IA3 to its Target Enzyme

    Get PDF
    Biomolecular function is realized by recognition, and increasing evidence shows that recognition is determined not only by structure but also by flexibility and dynamics. We explored a biomolecular recognition process that involves a major conformational change – protein folding. In particular, we explore the binding-induced folding of IA3, an intrinsically disordered protein that blocks the active site cleft of the yeast aspartic proteinase saccharopepsin (YPrA) by folding its own N-terminal residues into an amphipathic alpha helix. We developed a multi-scaled approach that explores the underlying mechanism by combining structure-based molecular dynamics simulations at the residue level with a stochastic path method at the atomic level. Both the free energy profile and the associated kinetic paths reveal a common scheme whereby IA3 binds to its target enzyme prior to folding itself into a helix. This theoretical result is consistent with recent time-resolved experiments. Furthermore, exploration of the detailed trajectories reveals the important roles of non-native interactions in the initial binding that occurs prior to IA3 folding. In contrast to the common view that non-native interactions contribute only to the roughness of landscapes and impede binding, the non-native interactions here facilitate binding by reducing significantly the entropic search space in the landscape. The information gained from multi-scaled simulations of the folding of this intrinsically disordered protein in the presence of its binding target may prove useful in the design of novel inhibitors of aspartic proteinases
    • …
    corecore