1,738 research outputs found

    Leaf litter mixtures alter microbial community development: Mechanisms for non-additive effects in litter decomposition

    Get PDF
    To what extent microbial community composition can explain variability in ecosystem processes remains an open question in ecology. Microbial decomposer communities can change during litter decomposition due to biotic interactions and shifting substrate availability. Though relative abundance of decomposers may change due to mixing leaf litter, linking these shifts to the non-additive patterns often recorded in mixed species litter decomposition rates has been elusive, and links community composition to ecosystem function. We extracted phospholipid fatty acids (PLFAs) from single species and mixed species leaf litterbags after 10 and 27 months of decomposition in a mixed conifer forest. Total PLFA concentrations were 70% higher on litter mixtures than single litter types after 10 months, but were only 20% higher after 27 months. Similarly, fungal-to-bacterial ratios differed between mixed and single litter types after 10 months of decomposition, but equalized over time. Microbial community composition, as indicated by principal components analyses, differed due to both litter mixing and stage of litter decomposition. PLFA biomarkers a15∶0 and cy17∶0, which indicate gram-positive and gram-negative bacteria respectively, in particular drove these shifts. Total PLFA correlated significantly with single litter mass loss early in decomposition but not at later stages. We conclude that litter mixing alters microbial community development, which can contribute to synergisms in litter decomposition. These findings advance our understanding of how changing forest biodiversity can alter microbial communities and the ecosystem processes they mediate

    Long-term insect herbivory slows soil development in an arid ecosystem

    Get PDF
    Although herbivores are well known to alter litter inputs and soil nutrient fluxes, their long-term influences on soil development are largely unknown because of the difficulty of detecting and attributing changes in carbon and nutrient pools against large background levels. The early phase of primary succession reduces this signal-to-noise problem, particularly in arid systems where individual plants can form islands of fertility. We used natural variation in tree-resistance to herbivory, and a 15 year herbivore-removal experiment in an Arizona piñon-juniper woodland that was established on cinder soils following a volcanic eruption, to quantify how herbivory shapes the development of soil carbon (C) and nitrogen (N) over 36–54 years (i.e., the ages of the trees used in our study). In this semi-arid ecosystem, trees are widely spaced on the landscape, which allows direct examination of herbivore impacts on the nutrient-poor cinder soils. Although chronic insect herbivory increased annual litterfall N per unit area by 50% in this woodland, it slowed annual tree-level soil C and N accumulation by 111% and 96%, respectively. Despite the reduction in soil C accumulation, short-term litterfall-C inputs and soil C-efflux rates per unit soil surface were not impacted by herbivory. Our results demonstrate that the effects of herbivores on soil C and N fluxes and soil C and N accumulation are not necessarily congruent: herbivores can increase N in litterfall, but over time their impact on plant growth and development can slow soil development. In sum, because herbivores slow tree growth, they slow soil development on the landscape. http://dx.doi.org/10.1890/ES12-00411.

    Roles of key active-site residues in flavocytochrome P450 BM3

    Get PDF
    Abbreviations used: P450, cytochrome P450 mono-oxygenase; ImC12, 12-(imidazolyl)dodecanoic acid; 1-PIM, 1-phenylimidazole.The effects of mutation of key active-site residues (Arg-47, Tyr-51, Phe-42 and Phe-87) in Bacillus megaterium flavocytochrome P450 BM3 were investigated. Kinetic studies on the oxidation of laurate and arachidonate showed that the side chain of Arg-47 contributes more significantly to stabilization of the fatty acid carboxylate than does that of Tyr-51 (kinetic parameters for oxidation of laurate: R47A mutant, Km 859 µM, kcat 3960 min-1; Y51F mutant, Km 432 µM, kcat 6140 min-1; wild-type, Km 288 µM, kcat 5140 min-1). A slightly increased kcat for the Y51F-catalysed oxidation of laurate is probably due to decreased activation energy (DG‡) resulting from a smaller DG of substrate binding. The side chain of Phe-42 acts as a phenyl 'cap' over the mouth of the substrate-binding channel. With mutant F42A, Km is massively increased and kcat is decreased for oxidation of both laurate (Km 2.08 mM, kcat 2450 min-1) and arachidonate (Km 34.9 µM, kcat 14620 min-1; compared with values of 4.7 µM and 17100 min-1 respectively for wild-type). Amino acid Phe-87 is critical for efficient catalysis. Mutants F87G and F87Y not only exhibit increased Km and decreased kcat values for fatty acid oxidation, but also undergo an irreversible conversion process from a 'fast' to a 'slow' rate of substrate turnover [for F87G (F87Y)-catalysed laurate oxidation: kcat 'fast', 760 (1620) min-1; kcat 'slow', 48.0 (44.6) min-1; kconv (rate of conversion from fast to slow form), 4.9 (23.8) min-1]. All mutants showed less than 10% uncoupling of NADPH oxidation from fatty acid oxidation. The rate of FMN-to-haem electron transfer was shown to become rate-limiting in all mutants analysed. For wild-type P450 BM3, the rate of FMN-to-haem electron transfer (8340 min-1) is twice the steady-state rate of oxidation (4100 min-1), indicating that other steps contribute to rate limitation. Active-site structures of the mutants were probed with the inhibitors 12-(imidazolyl)dodecanoic acid and 1-phenylimidazole. Mutant F87G binds 1-phenylimidazole > 10-fold more tightly than does the wild-type, whereas mutant Y51F binds the haem-co-ordinating fatty acid analogue 12-(imidazolyl)dodecanoic acid > 30-fold more tightly than wild-type

    Structural and mechanistic mapping of a unique fumarate reductase

    Get PDF
    The 1.8 Å resolution crystal structure of the tetraheme flavocytochrome c3, Fcc3, provides the first mechanistic insight into respiratory fumarate reductases or succinate dehydrogenases. The multi-redox center, three-domain protein shows a 40 Å long ‘molecular wire’ allowing rapid conduction of electrons through a new type of cytochrome domain onto the active site flavin, driving the reduction of fumarate to succinate. In this structure a malate-like molecule is trapped in the enzyme active site. The interactions between this molecule and the enzyme suggest a clear mechanism for fumarate reduction in which the substrate is polarized and twisted, facilitating hydride transfer from the reduced flavin and subsequent proton transfer. The enzyme active site in the oxidized form is completely buried at the interface between the flavin-binding and the clamp domains. Movement of the cytochrome and clamp domains is postulated to allow release of the product

    Exploring the mechanism of tryptophan 2,3-dioxygenase

    Get PDF
    The haem proteins TDO (tryptophan 2,3-dioxygenase) and IDO (indoleamine 2,3-dioxygenase) are specific and powerful oxidation catalysts that insert one molecule of dioxygen into L-tryptophan in the first and rate-limiting step in the kynurenine pathway. Recent crystallographic and biochemical analyses of TDO and IDO have greatly aided our understanding of the mechanisms employed by these enzymes in the binding and activation of dioxygen and tryptophan. In the present paper, we briefly discuss the function, structure and possible catalytic mechanism of these enzymes

    Phase behaviour of dehydrated phosphatidylcholines

    Get PDF
    Dehydrated DLPC, DMPC, DPPC and DSPC have been characterised at temperatures below the diacyl carbon chain-melting transition (Tm), using DSC. For the first time, the existence of pre-Tm transition processes, which are, usually, only observed in the colloidal/liposomal state of saturated phospholipids have been detected for the dehydrated phosphatidylcholines. Temperature modulated differential scanning calorimetry (TMDSC) was used to characterize the several complex, overlapping pre-Tm transition processes. Kinetic studies of the chain-melting (Tm) transition show the activation energy dependence on α (conversion rate) i.e. activation energy decreases as the transition progresses, pointing to the importance of initial cooperative (intra- and inter-molecular) mobility. Furthermore the activation energy increases with increase in diacyl chain length of the phosphatidylcholines which supports the finding that greater molecular interactions of the polymer chain and its head groups in the dehydrated solid state lead to enhanced stability of dehydrated phosphatidylcholines

    Multilocus Sequence Typing Methods for the Emerging Campylobacter Species C. hyointestinalis, C. lanienae, C. sputorum, C. concisus, and C. curvus

    Get PDF
    Multilocus sequence typing (MLST) systems have been reported previously for multiple food- and food animal-associated Campylobacter species (e.g., C. jejuni, C. coli, C. lari, and C. fetus) to both differentiate strains and identify clonal lineages. These MLST methods focused primarily on campylobacters of human clinical (e.g., C. jejuni) or veterinary (e.g., C. fetus) relevance. However, other, emerging, Campylobacter species have been isolated increasingly from environmental, food animal, or human clinical samples. We describe herein four MLST methods for five emerging Campylobacter species: C. hyointestinalis, C. lanienae, C. sputorum, C. concisus, and C. curvus. The concisus/curvus method uses the loci aspA, atpA, glnA, gltA, glyA, ilvD, and pgm, whereas the other methods use the seven loci defined for C. jejuni (i.e., aspA, atpA, glnA, gltA, glyA, pgm, and tkt). Multiple food animal and human clinical C. hyointestinalis (n = 48), C. lanienae (n = 34), and C. sputorum (n = 24) isolates were typed, along with 86 human clinical C. concisus and C. curvus isolates. A large number of sequence types were identified using all four MLST methods. Additionally, these methods speciated unequivocally isolates that had been typed ambiguously using other molecular-based speciation methods, such as 16S rDNA sequencing. Finally, the design of degenerate primer pairs for some methods permitted the typing of related species; for example, the C. hyointestinalis primer pairs could be used to type C. fetus strains. Therefore, these novel Campylobacter MLST methods will prove useful in differentiating strains of multiple, emerging Campylobacter species

    The Aussie, 1918-1931: cartoons, digger remembrance and First World War identity

    Get PDF
    Feelings of community, cultural definition and memory were kept alive through the soldiers’ mass circulation tabloid, the Aussie, examined here in the light of theorization of memory and representation, applied to both text and cartoons. The publication’s aim for veterans’ values to become shared national values is analysed in the light of its high profile usage of soft cartoon humour and also of nostalgia – highlighting the limitations as well as the effectiveness in terms of Australia’s evolving national identity. When the post-war economic situation worsened, deeper issues of national tension were glossed over by the use of scapegoats such as ‘profiteers’ and ‘lazy workers’. The armed forces were obliged to take on a political role of lobbying for their cause, but the Aussie as ‘cheerful friend’ experienced its own identity crisis that proved to be terminal
    corecore