2,011 research outputs found

    Oncolytic virus-based suicide gene therapy for cancer treatment: a perspective of the clinical trials conducted at Henry Ford Health

    Get PDF
    Gene therapy manipulates or modifies a gene that provides a new cellular function to treat or correct a pathological condition, such as cancer. The approach of using gene manipulation to modify patient\u27s cells to improve cancer therapy and potentially find a cure is gaining popularity. Currently, there are 12 gene therapy products approved by US-FDA, EMA and CFDA for cancer management, these include Rexin-G, Gendicine, Oncorine, Provange among other. The Radiation Biology Research group at Henry Ford Health has been actively developing gene therapy approaches for improving clinical outcome in cancer patients. The team was the first to test a replication-competent oncolytic virus armed with a therapeutic gene in humans, to combine this approach with radiation in humans, and to image replication-competent adenoviral gene expression/activity in humans. The adenoviral gene therapy products developed at Henry Ford Health have been evaluated in more than 6 preclinical studies and evaluated in 9 investigator initiated clinical trials treating more than100 patients. Two phase I clinical trials are currently following patients long term and a phase I trial for recurrent glioma was initiated in November 2022. This systematic review provides an overview of gene therapy approaches and products employed for treating cancer patients including the products developed at Henry Ford Health

    Orchestration of renewable generation in low energy buildings and districts using energy storage and load shifting

    Get PDF
    There is increasing penetration of renewable generation in buildings and districts. There are challenges in making the effective use of this generation. The objective of the ORIGIN project (Orchestration of Renewable Integrated Generation In Neighborhoods) is to shape loads so that the fraction of energy consumed that is from local renewable generation is maximized, and energy imported from outside sources is minimized. This paper presents the overall approach taken in the ORIGIN project and explores building physics aspects of solar thermal storage system orchestration. The case study districts are briefly introduced and characteristics of their generation, buildings, districts and shiftable loads described. The orchestration approach taken in ORIGIN is then presented. At the core of the ORIGIN system is the orchestration algorithm which generates informational and control outputs to shape future loads to best meet the objectives. The model based approach used to quantify thermal and electrical load shifting opportunities for pre-charging, coasting or avoiding loads, while meeting thermal comfort and other demands, is described using a solar thermal storage system as an example. The future steps for the ORIGIN project; retrofit of the ORIGIN system into existing districts and potential for other future applications is briefly discussed

    In situ observation of oxygen vacancy dynamics and ordering in the epitaxial LaCoO3 system

    Get PDF
    Vacancy dynamics and ordering underpin the electrochemical functionality of complex oxides and strongly couple to their physical properties. In the field of the epitaxial thin films, where connection between chemistry and film properties can be most clearly revealed, the effects related to oxygen vacancies are attracting increasing attention. In this article, we report a direct, real-time, atomic level observation of the formation of oxygen vacancies in the epitaxial LaCoO3 thin films and heterostructures under the influence of the electron beam utilizing scanning transmission electron microscopy (STEM). In the case of LaCoO3/SrTiO3 superlattice, the formation of the oxygen vacancies is shown to produce quantifiable changes in the interatomic distances, as well as qualitative changes in the symmetry of the Co sites manifested as off-center displacements. The onset of these changes was observed in both the [100]pc and [110]pc orientations in real time. Additionally, annular bright field images directly show the formation of oxygen vacancy channels along [110]pc direction. In the case of 15 u.c. LaCoO3 thin film, we observe the sequence of events during beam-induced formation of oxygen vacancy ordered phases and find them consistent with similar processes in the bulk. Moreover, we record the dynamics of the nucleation, growth, and defect interaction at the atomic scale as these transformations happen. These results demonstrate that we can track dynamic oxygen vacancy behavior with STEM, generating atomic-level quantitative information on phase transformation and oxygen diffusion

    Charge transport modulation of a flexible quantum dot solar cell using a piezoelectric effect

    Get PDF
    Colloidal quantum dots are promising materials for flexible solar cells, as they have a large absorption coefficient at visible and infrared wavelengths, a band gap that can be tuned across the solar spectrum, and compatibility with solution processing. However, the performance of flexible solar cells can be degraded by the loss of charge carriers due to recombination pathways that exist at a junction interface as well as the strained interface of the semiconducting layers. The modulation of the charge carrier transport by the piezoelectric effect is an effective way of resolving and improving the inherent material and structural defects. By inserting a porous piezoelectric poly(vinylidenefluoride‐trifluoroethylene) layer so as to generate a converging electric field, it is possible to modulate the junction properties and consequently enhance the charge carrier behavior at the junction. This study shows that due to a reduction in the recombination and an improvement in the carrier extraction, a 38% increase in the current density along with a concomitant increase of 37% in the power conversion efficiency of flexible quantum dots solar cells can be achieved by modulating the junction properties using the piezoelectric effect

    Consecutive Junction-Induced Efficient Charge Separation Mechanisms for High-Performance MoS2/Quantum Dot Phototransistors.

    Get PDF
    Phototransistors that are based on a hybrid vertical heterojunction structure of two-dimensional (2D)/quantum dots (QDs) have recently attracted attention as a promising device architecture for enhancing the quantum efficiency of photodetectors. However, to optimize the device structure to allow for more efficient charge separation and transfer to the electrodes, a better understanding of the photophysical mechanisms that take place in these architectures is required. Here, we employ a novel concept involving the modulation of the built-in potential within the QD layers for creating a new hybrid MoS2/PbS QDs phototransistor with consecutive type II junctions. The effects of the built-in potential across the depletion region near the type II junction interface in the QD layers are found to improve the photoresponse as well as decrease the response times to 950 μs, which is the faster response time (by orders of magnitude) than that recorded for previously reported 2D/QD phototransistors. Also, by implementing an electric-field modulation of the MoS2 channel, our experimental results reveal that the detectivity can be as large as 1 × 1011 jones. This work demonstrates an important pathway toward designing hybrid phototransistors and mixed-dimensional van der Waals heterostructures.The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007−2013)/ERC Grant Agreement no. 340538. This work was also supported by the National Research Foundation of Korea (NRF) (2015M2A2A6A02045252) and Samsung Global Research Outreach (Samsung GRO) program. In addition, S.M.M. would like to thank The Royal Society for financial support

    Balancing Charge Carrier Transport in a Quantum Dot P-N Junction toward Hysteresis-Free High-Performance Solar Cells.

    Get PDF
    In a quantum dot solar cell (QDSC) that has an inverted structure, the QD layers form two different junctions between the electron transport layer (ETL) and the other semiconducting QD layer. Recent work on an inverted-structure QDSC has revealed that the junction between the QD layers is the dominant junction, rather than the junction between the ETL and the QD layers, which is in contrast to the conventional wisdom. However, to date, there have been a lack of systematic studies on the role and importance of the QD heterojunction structure on the behavior of the solar cell and the resulting device performance. In this study, we have systematically controlled the structure of the QD junction to balance charge transport, which demonstrates that the position of the junction has a significant effect on the hysteresis effect, fill factor, and solar cell performance and is attributed to balanced charge transport

    Balancing charge carriertransport in a quantum dot P-N junction toward hysteresis-free high-performance solar cells

    Get PDF
    In a quantum dot solar cell (QDSC) that has an inverted structure, the QD layers form two different junctions between the electron transport layer (ETL) and the other semiconducting QD layer. Recent work on an inverted-structure QDSC has revealed that the junction between the QD layers is the dominant junction, rather than the junction between the ETL and the QD layers, which is in contrast to the conventional wisdom. However, to date, there have been a lack of systematic studies on the role and importance of the QD heterojunction structure on the behavior of the solar cell and the resulting device performance. In this study, we have systematically controlled the structure of the QD junction to balance charge transport, which demonstrates that the position of the junction has a significant effect on the hysteresis effect, fill factor, and solar cell performance and is attributed to balanced charge transport
    corecore