131 research outputs found

    Comparing the Clinical and Economic Outcomes Associated with Adjuvanted versus High-Dose Trivalent Influenza Vaccine among Adults Aged ≥ 65 Years in the US during the 2019-20 Influenza Season:A Retrospective Cohort Analysis

    Get PDF
    The burden of influenza is disproportionally higher among older adults. We evaluated the relative vaccine effectiveness (rVE) of adjuvanted trivalent (aIIV3) compared to high-dose trivalent influenza vaccine (HD-IIV3e) against influenza and cardio-respiratory disease (CRD)-related hospitalizations/ER visits among adults ≥65 years during the 2019–2020 influenza season. Economic outcomes were also compared. A retrospective cohort analysis was conducted using prescription, professional fee claims, and hospital data. Inverse probability of treatment weighting (IPTW) was used to adjust for confounding. IPTW-adjusted Poisson regression was used to evaluate the adjusted rVE of aIIV3 versus HD-IIV3e. All-cause and influenza-related healthcare resource utilization (HCRU) and costs were examined post-IPTW. Recycled predictions from generalized linear models were used to estimate adjusted costs. Adjusted analysis showed that aIIV3 (n = 798,987) was similarly effective compared to HD-IIV3e (n = 1,655,979) in preventing influenza-related hospitalizations/ER visits (rVE 3.1%; 95% CI: −2.8%; 8.6%), hospitalizations due to any cause (−0.7%; 95% CI: −1.6%; 0.3%), and any CRD-related hospitalization/ER visit (0.9%; 95% CI: 0.01%; 1.7%). Adjusted HCRU and annualized costs were also statistically insignificant between the two cohorts. The adjusted clinical and economic outcomes evaluated in this study were comparable between aIIV3 and HD-IIV3e during the 2019–2020 influenza season

    A Real-World Clinical and Economic Analysis of Cell-Derived Quadrivalent Influenza Vaccine Compared to Standard Egg-Derived Quadrivalent Influenza Vaccines During the 2019-2020 Influenza Season in the United States

    Get PDF
    BACKGROUND: Cell-derived influenza vaccines are not subject to egg-adaptive mutations that have potential to decrease vaccine effectiveness. This retrospective analysis estimated the relative vaccine effectiveness (rVE) of cell-derived quadrivalent influenza vaccine (IIV4c) compared to standard egg-derived quadrivalent influenza vaccines (IIV4e) among recipients aged 4–64 years in the United States during the 2019–2020 influenza season. METHODS: The IQVIA PharMetrics Plus administrative claims database was utilized. Study outcomes were assessed postvaccination through the end of the study period (7 March 2020). Inverse probability of treatment weighting (IPTW) was implemented to adjust for covariate imbalance. Adjusted rVE against influenza-related hospitalizations/emergency room (ER) visits and other clinical outcomes was estimated through IPTW-weighted Poisson regression models for the IIV4c and IIV4e cohorts and for the subgroup with ≥1 high-risk condition. Sensitivity analyses modifying the outcome assessment period as well as a doubly-robust analysis were also conducted. IPTW-weighted generalized linear models were used to estimate predicted annualized all-cause costs. RESULTS: The final sample comprised 1 150 134 IIV4c and 3 924 819 IIV4e recipients following IPTW adjustment. IIV4c was more effective in preventing influenza-related hospitalizations/ER visits as well as respiratory-related hospitalizations/ER visits compared to IIV4e. IIV4c was also more effective for the high-risk subgroup and across the sensitivity analyses. IIV4c was also associated with significantly lower annualized all-cause total costs compared to IIV4e (–$467), driven by lower costs for outpatient medical services and inpatient hospitalizations. CONCLUSIONS: IIV4c was significantly more effective in preventing influenza-related hospitalizations/ER visits compared to IIV4e and was associated with significantly lower all-cause costs

    Sialic acid mediated transcriptional modulation of a highly conserved sialometabolism gene cluster in Haemophilus influenzae and its effect on virulence

    Get PDF
    Background. Sialic acid has been shown to be a major virulence determinant in the pathogenesis of otitis media caused by the bacterium Haemophilus influenzae. This study aimed to characterise the expression of genes required for the metabolism of sialic acid and to investigate the role of these genes in virulence. Results. Using qRT-PCR, we observed decreased transcriptional activity of genes within a cluster that are required for uptake and catabolism of 5-acetyl neuraminic acid (Neu5Ac), when bacteria were cultured in the presence of the sugar. We show that these uptake and catabolic genes, including a sialic acid regulatory gene (siaR), are highly conserved in the H. influenzae natural population. Mutant strains were constructed for seven of the nine genes and their influence upon LPS sialylation and resistance of the bacteria to the killing effect of normal human serum were assessed. Mutations in the Neu5Ac uptake (TRAP transporter) genes decreased virulence in the chinchilla model of otitis media, but the attenuation was strain dependent. In contrast, mutations in catabolism genes and genes regulating sialic acid metabolism (siaR and crp) did not attenuate virulence. Conclusion. The commensal and pathogenic behaviour of H. influenzae involves LPS sialylation that can be influenced by a complex regulatory interplay of sialometabolism genes. © 2010 Jenkins et al; licensee BioMed Central Ltd
    corecore