13 research outputs found

    Minimally Invasive Pyeloplasty in Horseshoe Kidneys with Ureteropelvic Junction obstruction: A case series

    No full text
    Background and Purpose Horseshoe kidney is an uncommon renal anomaly often associated with ureteropelvic junction (UPJ) obstruction. Advanced minimally invasive surgical (MIS) reconstructive techniques including laparoscopic and robotic surgery are now being utilized in this population. However, fewer than 30 cases of MIS UPJ reconstruction in horseshoe kidneys have been reported. We herein report our experience with these techniques in the largest series to date. Materials and Methods We performed a retrospective chart review of nine patients with UPJ obstruction in horseshoe kidneys who underwent MIS repair at our institution between March 2000 and January 2012. Four underwent laparoscopic, two robotic, and one laparoendoscopic single-site (LESS) dismembered pyeloplasty. An additional two pediatric patients underwent robotic Hellstrom repair. Perioperative outcomes and treatment success were evaluated. Results Median patient age was 18 years (range 2.5-62 years). Median operative time was 136 minutes (range 109-230 min.) and there were no perioperative complications. After a median follow-up of 11 months, clinical (symptomatic) success was 100%, while radiographic success based on MAG-3 renogram was 78%. The two failures were defined by prolonged t1/2 drainage, but neither patient has required salvage therapy as they remain asymptomatic with stable differential renal function. Conclusions MIS repair of UPJ obstruction in horseshoe kidneys is feasible and safe. Although excellent short-term clinical success is achieved, radiographic success may be lower than MIS pyeloplasty in heterotopic kidneys, possibly due to inherent differences in anatomy. Larger studies are needed to evaluate MIS pyeloplasty in this population

    A parameter sensitivity study for simulating DNA damage after proton irradiation using TOPAS-nBio

    No full text
    Monte Carlo (MC) track structure simulation tools are commonly used for predicting radiation induced DNA damage by modeling the physical and chemical reactions at the nanometer scale. However, the outcome of these MC simulations is particularly sensitive to the adopted parameters which vary significantly across studies. In this study, a previously developed full model of nuclear DNA was used to describe the DNA geometry. The TOPAS-nBio MC toolkit was used to investigate the impact of physics and chemistry models as well as three key parameters (the energy threshold for direct damage, the chemical stage time length, and the probability of damage between hydroxyl radical reactions with DNA) on the induction of DNA damage. Our results show that the difference in physics and chemistry models alone can cause differences up to 34% and 16% in the DNA double strand break (DSB) yield, respectively. Additionally, changing the direct damage threshold, chemical stage length, and hydroxyl damage probability can cause differences of up to 28%, 51%, and 71% in predicted DSB yields, respectively, for the configurations in this study

    Cellular Response to Proton Irradiation: A Simulation Study with TOPAS-nBio

    No full text
    The cellular response to ionizing radiation continues to be of significant research interest in cancer radiotherapy, and DNA is recognized as the critical target for most of the biologic effects of radiation. Incident particles can cause initial DNA damages through physical and chemical interactions within a short time scale. Initial DNA damages can undergo repair via different pathways available at different stages of the cell cycle. The misrepair of DNA damage results in genomic rearrangement and causes mutations and chromosome aberrations, which are drivers of cell death. This work presents an integrated study of simulating cell response after proton irradiation with energies of 0.5-500 MeV (LET of 60-0.2 keV/µm). A model of a whole nucleus with fractal DNA geometry was implemented in TOPAS-nBio for initial DNA damage simulations. The default physics and chemistry models in TOPAS-nBio were used to describe interactions of primary particles, secondary particles, and radiolysis products within the nucleus. The initial DNA double-strand break (DSB) yield was found to increase from 6.5 DSB/Gy/Gbp at low-linear energy transfer (LET) of 0.2 keV/µm to 21.2 DSB/Gy/Gbp at high LET of 60 keV/µm. A mechanistic repair model was applied to predict the characteristics of DNA damage repair and dose response of chromosome aberrations. It was found that more than 95% of the DSBs are repaired within the first 24 h and the misrepaired DSB fraction increases rapidly with LET and reaches 15.8% at 60 keV/µm with an estimated chromosome aberration detection threshold of 3 Mbp. The dicentric and acentric fragment yields and the dose response of micronuclei formation after proton irradiation were calculated and compared with experimental results

    Impact of DNA Geometry and Scoring on Monte Carlo Track-Structure Simulations of Initial Radiation-Induced Damage

    No full text
    Track structure Monte Carlo simulations are a useful tool to investigate the damage induced to DNA by ionizing radiation. These simulations usually rely on simplified geometrical representations of the DNA subcomponents. DNA damage is determined by the physical and physicochemical processes occurring within these volumes. In particular, damage to the DNA backbone is generally assumed to result in strand breaks. DNA damage can be categorized as direct (ionization of an atom part of the DNA molecule) or indirect (damage from reactive chemical species following water radiolysis). We also consider quasi-direct effects, i.e., damage originated by charge transfers after ionization of the hydration shell surrounding the DNA. DNA geometries are needed to account for the damage induced by ionizing radiation, and different geometry models can be used for speed or accuracy reasons. In this work, we use the Monte Carlo track structure tool TOPAS-nBio, built on top of Geant4-DNA, for simulation at the nanometer scale to evaluate differences among three DNA geometrical models in an entire cell nucleus, including a sphere/spheroid model specifically designed for this work. In addition to strand breaks, we explicitly consider the direct, quasi-direct, and indirect damage induced to DNA base moieties. We use results from the literature to determine the best values for the relevant parameters. For example, the proportion of hydroxyl radical reactions between base moieties was 80%, and between backbone, moieties was 20%, the proportion of radical attacks leading to a strand break was 11%, and the expected ratio of base damages and strand breaks was 2.5-3. Our results show that failure to update parameters for new geometric models can lead to significant differences in predicted damage yields
    corecore