176 research outputs found

    Constraints on Extra Gauge Bosons in e gamma Collisions

    Full text link
    We investigate the sensitivity of e- gamma ---> nu_e nu_mu(bar) mu- to extra charged gauge bosons. The sensitivity is much below that of e-e+ ---> nu nu(bar) gamma. We conclude that e- gamma ---> d u(bar) nu_e and e- gamma ---> f f(bar) e- are also inferior to e+e- collisions in setting bounds on extra charged and neutral gauge bosons and on four fermion contact interactions.Comment: 6 pages Latex, 5 figures included by epsf, uses e-e-ijmpa.sty and citepunct.sty (included

    Protocellular CRISPR/Cas-Based Diffusive Communication Using Transcriptional RNA Signaling

    Get PDF
    Protocells containing enzyme-driven biomolecular circuits that can process and exchange information offer a promising approach for mimicking cellular features and developing molecular information platforms. Here, we employ synthetic transcriptional circuits together with CRISPR/Cas-based DNA processing inside semipermeable protein-polymer microcompartments. We first establish a transcriptional protocell that can be activated by external DNA strands and produce functional RNA aptamers. Subsequently, we engineer a transcriptional module to generate RNA strands functioning as diffusive signals that can be sensed by neighboring protocells and trigger the activation of internalized DNA probes or localization of Cas nucleases. Our results highlight the opportunities to combine CRISPR/Cas machinery and DNA nanotechnology for protocellular communication and provide a step towards the development of protocells capable of distributed molecular information processing.</p

    Orthogonal Light-Dependent Membrane Adhesion Induces Social Self-Sorting and Member-Specific DNA Communication in Synthetic Cell Communities

    Get PDF
    Developing orthogonal chemical communication pathways in diverse synthetic cell communities is a considerable challenge due to the increased crosstalk and interference associated with large numbers of different types of sender-receiver pairs. Herein, the authors control which sender-receiver pairs communicate in a three-membered community of synthetic cells through red and blue light illumination. Semipermeable protein-polymer-based synthetic cells (proteinosomes) with complementary membrane-attached protein adhesion communicate through single-stranded DNA oligomers and synergistically process biochemical information within a community consisting of one sender and two different receiver populations. Different pairs of red and blue light-responsive protein-protein interactions act as membrane adhesion mediators between the sender and receivers such that they self-assemble and socially self-sort into different multicellular structures under red and blue light. Consequently, distinct sender-receiver pairs come into the signaling range depending on the light illumination and are able to communicate specifically without activation of the other receiver population. Overall, this work shows how photoswitchable membrane adhesion gives rise to different self-sorting protocell patterns that mediate member-specific DNA-based communication in ternary populations of synthetic cells and provides a step towards the design of orthogonal chemical communication networks in diverse communities of synthetic cells

    Updated report on the Edinburgh - Laing wave energy device (The Duck)

    Get PDF
    John Laing Limited have been associated with Stephen Salter, of Edinburgh University, since the late autumn of 1978. In May 1981, at the request of ETSU, a proposal was submitted to The Wave Energy Steering Committee for updating the 1979 report. This presentation led to an Instruction to Proceed being issued by the Department of Energy in August 1981

    DNA-based communication in populations of synthetic protocells

    Get PDF
    Developing molecular communication platforms based on orthogonal communication channels is a crucial step towards engineering artificial multicellular systems. Here, we present a general and scalable platform entitled ‘biomolecular implementation of protocellular communication’ (BIO-PC) to engineer distributed multichannel molecular communication between populations of non-lipid semipermeable microcapsules. Our method leverages the modularity and scalability of enzyme-free DNA strand-displacement circuits to develop protocellular consortia that can sense, process and respond to DNA-based messages. We engineer a rich variety of biochemical communication devices capable of cascaded amplification, bidirectional communication and distributed computational operations. Encapsulating DNA strand-displacement circuits further allows their use in concentrated serum where non-compartmentalized DNA circuits cannot operate. BIO-PC enables reliable execution of distributed DNA-based molecular programs in biologically relevant environments and opens new directions in DNA computing and minimal cell technology

    Two-loop scalar self-energies in a general renormalizable theory at leading order in gauge couplings

    Full text link
    I present results for the two-loop self-energy functions for scalars in a general renormalizable field theory, using mass-independent renormalization schemes based on dimensional regularization and dimensional reduction. The results are given in terms of a minimal set of loop-integral basis functions, which are readily evaluated numerically by computers. This paper contains the contributions corresponding to the Feynman diagrams with zero or one vector propagator lines. These are the ones needed to obtain the pole masses of the neutral and charged Higgs scalar bosons in supersymmetry, neglecting only the purely electroweak parts at two-loop order. A subsequent paper will present the results for the remaining diagrams, which involve two or more vector lines.Comment: 26 pages, 4 figures, revtex4, axodraw.sty. Version 2: sentence after eq. (A.13) corrected, references added. Version 3: typos in eqs. (5.17), (5.20), (5.21), (5.32) are corrected. Also, the MSbar versions of eqs. (5.32) and (5.33) are now include

    Pathway-Wide Association Study Implicates Multiple Sterol Transport and Metabolism Genes in HDL Cholesterol Regulation

    Get PDF
    Pathway-based association methods have been proposed to be an effective approach in identifying disease genes, when single-marker association tests do not have sufficient power. The analysis of quantitative traits may be benefited from these approaches, by sampling from two extreme tails of the distribution. Here we tested a pathway association approach on a small genome-wide association study (GWAS) on 653 subjects with extremely high high-density lipoprotein cholesterol (HDL-C) levels and 784 subjects with low HDL-C levels. We identified 102 genes in the sterol transport and metabolism pathways that collectively associate with HDL-C levels, and replicated these association signals in an independent GWAS. Interestingly, the pathways include 18 genes implicated in previous GWAS on lipid traits, suggesting that genuine HDL-C genes are highly enriched in these pathways. Additionally, multiple biologically relevant loci in the pathways were not detected by previous GWAS, including genes implicated in previous candidate gene association studies (such as LEPR, APOA2, HDLBP, SOAT2), genes that cause Mendelian forms of lipid disorders (such as DHCR24), and genes expressing dyslipidemia phenotypes in knockout mice (such as SOAT1, PON1). Our study suggests that sampling from two extreme tails of a quantitative trait and examining genetic pathways may yield biological insights from smaller samples than are generally required using single-marker analysis in large-scale GWAS. Our results also implicate that functionally related genes work together to regulate complex quantitative traits, and that future large-scale studies may benefit from pathway-association approaches to identify novel pathways regulating HDL-C levels

    DNA storage in thermoresponsive microcapsules for repeated random multiplexed data access

    Get PDF
    In support of the publication "DNA storage in thermoresponsive microcapsules for repeated random multiplexed data access" we share the following datasets and code: AutoCAD drawing of the microfluidic trapping device. Sequences of the DNA used to encode the 25 files used in the current study. FASTQ-files of the sequencing experiments of Figures 5b and d. Python scripts that allow for the reproduction of our sequencing data analysis. The code has been tested on MacOS 13.0.1, Python 3.7.13, samtools 1.16.1 and BWA 0.7.17

    Butyrate inhibits human mast cell activation via epigenetic regulation of FcεRI-mediated signaling

    Get PDF
    Background: Short-chain fatty acids (SCFAs) are fermented dietary components that regulate immune responses, promote colonic health, and suppress mast cell–mediated diseases. However, the effects of SCFAs on human mast cell function, including the underlying mechanisms, remain unclear. Here, we investigated the effects of the SCFAs (acetate, propionate, and butyrate) on mast cell–mediated pathology and human mast cell activation, including the molecular mechanisms involved. Method: Precision-cut lung slices (PCLS) of allergen-exposed guinea pigs were used to assess the effects of butyrate on allergic airway contraction. Human and mouse mast cells were co-cultured with SCFAs and assessed for degranulation after IgE- or non–IgE-mediated stimulation. The underlying mechanisms involved were investigated using knockout mice, small molecule inhibitors/agonists, and genomics assays. Results: Butyrate treatment inhibited allergen-induced histamine release and airway contraction in guinea pig PCLS. Propionate and butyrate, but not acetate, inhibited IgE- and non–IgE-mediated human or mouse mast cell degranulation in a concentration-dependent manner. Notably, these effects were independent of the stimulation of SCFA receptors GPR41, GPR43, or PPAR, but instead were associated with inhibition of histone deacetylases. Transcriptome analyses revealed butyrate-induced downregulation of the tyrosine kinases BTK, SYK, and LAT, critical transducers of FcεRI-mediated signals that are essential for mast cell activation. Epigenome analyses indicated that butyrate redistributed global histone acetylation in human mast cells, including significantly decreased acetylation at the BTK, SYK, and LAT promoter regions. Conclusion: Known health benefits of SCFAs in allergic disease can, at least in part, be explained by epigenetic suppression of human mast cell activation

    Discovery and Identifictation of Extra Gauge Bosons in e^+e^- -> nu nubar gamma

    Full text link
    We examine the sensitivity of the process e+e- -> nu nubar gamma to extra gauge bosons, Z' and W', which arise in various extensions of the standard model. The process is found to be sensitive to W' masses up to several TeV, depending on the model, the center of mass energy, and the assumed integrated luminosity. If extra gauge bosons were discovered first in other experiments, the process could also be used to measure Z' nu nubar and W' couplings. This measurement would provide information that could be used to unravel the underlying theory, complementary to measurements at the Large Hadron Collider.Comment: 45 pages, 17 postscript figures, Latex. Uses RevTex and epsfi
    corecore