40 research outputs found

    Ethyl 6-methyl-4-[2-(4,4,5,5-tetra­methyl-1,3,2-dioxaborolan-2-yl)thio­phen-3-yl]-2-thioxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

    Get PDF
    A new Biginelli compound, C18H25BN2O4S2, containing a boronate ester group was synthesized from a lithium bromide-catalysed reaction. The compound crystallizes with two independent mol­ecules in the asymmetric unit that differ mainly in the conformation of the ester functionality. The crystal structure is stabilized by inter­molecular N—H⋯O and N—H⋯S hydrogen bonds involving the 3,4-dihydro­pyrimidine-2(1H)-thione NH groups as donors and the carbonyl O and thio­phene S atoms as acceptors

    Variability and change in the Canadian cryosphere

    Get PDF
    Abstract During the International Polar Year (IPY), comprehensive observational research programs were undertaken to increase our understanding of the Canadian polar cryosphere response to a changing climate. Cryospheric components considered were snow, permafrost, sea ice, freshwater ice, glaciers and ice shelves. Enhancement of conventional observing systems and retrieval algorithms for satellite measurements facilitated development of a snapshot of current cryospheric conditions, providing a baseline against which future change can be assessed. Key findings include: 1. surface air temperatures across the Canadian Arctic exhibit a warming trend in all seasons over the past 40 years. A consistent pan-cryospheric response to these warming temperatures is evident through the analysis of multi-decadal datasets; 2. in recent years (including the IPY period) a higher rate of change was observed compared to previous decades including warming permafrost, reduction in snow cover extent and duration, reduction in summer sea ice extent, increased mass loss from glaciers, and thinning and break-up of the remaining Canadian ice shelves. These changes illustrate both a reduction in the spatial extent and mass of the cryosphere and an increase in the temporal persistence of melt related parameters. The observed changes in the cryosphere have important implications for human activity including the close ties of northerners to the land, access to northern regions for natural resource development, and the integrity of northern infrastructure

    The Role of Economic Projections in Canadian Monetary Policy Formulation

    No full text
    This paper describes the economic aspects of the monetary policy formulation process in Canada. It begins by outlining how the objectives of policy mesh with the mainstream view of how the economy functions. A key implication of this framework is that policy formulation must be forward-looking. The discussion then turns to the role played by economic projections in the policy process, and how the staff at the Bank of Canada develop those projections and monitor the economy. The paper concludes with a description of how unforseen developments are incorporated into the projections, and how those updates are translated by the staff into a revised set of policy options for the consideration of senior management.

    Seasonal mean air temperatures and ice phenology characteristics of Great Bear Lake and Great Slave Lake (2002-2009)

    No full text
    Time series of brightness temperatures (T(B)) from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) are examined to determine ice phenology variables on the two largest lakes of northern Canada: Great Bear Lake (GBL) and Great Slave Lake (GSL). T(B) measurements from the 18.7, 23.8, 36.5, and 89.0 GHz channels (H- and V- polarization) are compared to assess their potential for detecting freeze-onset/melt-onset and ice-on/ice-off dates on both lakes. The 18.7 GHz (H-pol) channel is found to be the most suitable for estimating these ice dates as well as the duration of the ice cover and ice-free seasons. A new algorithm is proposed using this channel and applied to map all ice phenology variables on GBL and GSL over seven ice seasons (2002-2009). Analysis of the spatio-temporal patterns of each variable at the pixel level reveals that: (1) both freeze-onset and ice-on dates occur on average about one week earlier on GBL than on GSL (Day of Year (DY) 318 and 333 for GBL; DY 328 and 343 for GSL); (2) the freeze-up process or freeze duration (freeze-onset to ice-on) takes a slightly longer amount of time on GBL than on GSL (about 1 week on average); (3) melt-onset and ice-off dates occur on average one week and approximately four weeks later, respectively, on GBL (DY 143 and 183 for GBL; DY 135 and 157 for GSL); (4) the break-up process or melt duration (melt-onset to ice-off) lasts on average about three weeks longer on GBL; and (5) ice cover duration estimated from each individual pixel is on average about three weeks longer on GBL compared to its more southern counterpart, GSL. A comparison of dates for several ice phenology variables derived from other satellite remote sensing products (e.g. NOAA Interactive Multisensor Snow and Ice Mapping System (IMS), QuikSCAT, and Canadian Ice Service Database) show that, despite its relatively coarse spatial resolution, AMSR-E 18.7 GHz provides a viable means for monitoring of ice phenology on large northern lakes

    Semi-Automated Classification of Lake Ice Cover Using Dual Polarization RADARSAT-2 Imagery

    No full text
    Lake ice is a significant component of the cryosphere due to its large spatial coverage in high-latitude regions during the winter months. The Laurentian Great Lakes are the world’s largest supply of freshwater and their ice cover has a major impact on regional weather and climate, ship navigation, and public safety. Ice experts at the Canadian Ice Service (CIS) have been manually producing operational Great Lakes image analysis charts based on visual interpretation of the synthetic aperture radar (SAR) images. In that regard, we have investigated the performance of the semi-automated segmentation algorithm “glocal„ Iterative Region Growing with Semantics (IRGS) for lake ice classification using dual polarized RADARSAT-2 imagery acquired over Lake Erie. Analysis of various case studies indicated that the “glocal„ IRGS algorithm could provide a reliable ice-water classification using dual polarized images with a high overall accuracy of 90.4%. However, lake ice types that are based on stage of development were not effectively identified due to the ambiguous relation between backscatter and ice types. The slight improvement of using dual-pol as opposed to single-pol images for ice-water discrimination was also demonstrated
    corecore