28,625 research outputs found

    Adaptive wall technology for minimization of wall interferences in transonic wind tunnels

    Get PDF
    Modern experimental techniques to improve free air simulations in transonic wind tunnels by use of adaptive wall technology are reviewed. Considered are the significant advantages of adaptive wall testing techniques with respect to wall interferences, Reynolds number, tunnel drive power, and flow quality. The application of these testing techniques relies on making the test section boundaries adjustable and using a rapid wall adjustment procedure. A historical overview shows how the disjointed development of these testing techniques, since 1938, is closely linked to available computer support. An overview of Adaptive Wall Test Section (AWTS) designs shows a preference for use of relatively simple designs with solid adaptive walls in 2- and 3-D testing. Operational aspects of AWTS's are discussed with regard to production type operation where adaptive wall adjustments need to be quick. Both 2- and 3-D data are presented to illustrate the quality of AWTS data over the transonic speed range. Adaptive wall technology is available for general use in 2-D testing, even in cryogenic wind tunnels. In 3-D testing, more refinement of the adaptive wall testing techniques is required before more widespread use can be planned

    Supersonic wind tunnel nozzles: A selected, annotated bibliography to aid in the development of quiet wind tunnel technology

    Get PDF
    This bibliography, with abstracts, consists of 298 citations arranged in chronological order. The citations were selected to be helpful to persons engaged in the design and development of quiet (low disturbance) nozzles for modern supersonic wind tunnels. Author, subject, and corporate source indexes are included to assist with the location of specific information

    Micromechanics of cyclic deformation in SSME turbopump blade materials

    Get PDF
    Current and candidate Space Shuttle Main Engine (SSME) turbopump blade materials are anisotropic, both in their elastic and plastic response. The major objective is to characterize the plastic deformation behavior of a typical single crystal nickel-base superalloy, PWA 1480, and to use this information to help guide the development of anisotropic constitutive models

    Restorative Dentistry: Dental composite depth of cure with halogen and blue light emitting diode technology

    Get PDF
    Objectives To test the hypothesis that a blue light emitting diode (LED) light curing unit (LCU) can produce an equal dental composite depth of cure to a halogen LCU adjusted to give an irradiance of 300 mWcm–2 and to characterise the LCU's light outputs. Materials and methods Depth of cure for three popular composites was determined using a penetrometer. The Student's t test was used to analyse the depth of cure results. A power meter and a spectrometer measured the light output. Results The spectral distribution of the LCUs differed strongly. The irradiance for the LED and halogen LCUs were 290 mWcm–2 and 455 mWcm–2, when calculated from the scientific power meter measurements. The LED LCU cured all three dental composites to a significantly greater (P < 0.05) depth than the halogen LCU. Conclusions An LED LCU with an irradiance 64% of a halogen LCU achieved a significantly greater depth of cure. The LCU's spectral distribution of emitted light should be considered in addition to irradiance as a performance indicator. LED LCUs may have a potential for use in dental practice because their performance does not significantly reduce with time as do conventional halogen LCUs

    Highlights of experience with a flexible walled test section in the NASA Langley 0.3-meter transonic cryogenic tunnel

    Get PDF
    The unique combination of adaptive wall technology with a contonuous flow cryogenic wind tunnel is described. This powerful combination allows wind tunnel users to carry out 2-D tests at flight Reynolds numbers with wall interference essentially eliminated. Validation testing was conducted to support this claim using well tested symmetrical and cambered airfoils at transonic speeds and high Reynolds numbers. The test section hardware has four solid walls, with the floor and ceiling flexible. The method of adapting/shaping the floor and ceiling to eliminate top and bottom wall interference at its source is outlined. Data comparisons for different size models tested and others in several sophisticated 2-D wind tunnels are made. In addition, the effects of Reynolds number, testing at high lift with associated large flexible wall movements, the uniqueness of the adapted wall shapes, and the effects of sidewall boundary layer control are examined. The 0.3-m TCT is now the most advanced 2-D research facility anywhere

    Predictive wall adjustment strategy for two-dimensional flexible walled adaptive wind tunnel: A detailed description of the first one-step method

    Get PDF
    Following the realization that a simple iterative strategy for bringing the flexible walls of two-dimensional test sections to streamline contours was too slow for practical use, Judd proposed, developed, and placed into service what was the first Predictive Strategy. The Predictive Strategy reduced by 75 percent or more the number of iterations of wall shapes, and therefore the tunnel run-time overhead attributable to the streamlining process, required to reach satisfactory streamlines. The procedures of the Strategy are embodied in the FORTRAN subroutine WAS (standing for Wall Adjustment Strategy) which is written in general form. The essentials of the test section hardware, followed by the underlying aerodynamic theory which forms the basis of the Strategy, are briefly described. The subroutine is then presented as the Appendix, broken down into segments with descriptions of the numerical operations underway in each, with definitions of variables

    X-ray Source Heights in a Solar Flare: Thick-target versus Thermal Conduction Front Heating

    Full text link
    Observations of solar flares with RHESSI have shown X-ray sources traveling along flaring loops, from the corona down to the chromosphere and back up. The 28 November 2002 C1.1 flare, first observed with RHESSI by Sui et al. 2006 and quantitatively analyzed by O'Flannagain et al. 2013, very clearly shows this behavior. By employing numerical experiments, we use these observations of X-ray source height motions as a constraint to distinguish between heating due to a non-thermal electron beam and in situ energy deposition in the corona. We find that both heating scenarios can reproduce the observed light curves, but our results favor non-thermal heating. In situ heating is inconsistent with the observed X-ray source morphology and always gives a height dispersion with photon energy opposite to what is observed.Comment: Accepted to Ap

    EFFECTS OF INCREASING PANAMA CANAL TOLL RATES ON U.S. GRAIN EXPORTS

    Get PDF
    Some believe Panama Canal toll rates will increase dramatically as Panama's sovereignty over the Canal becomes complete at the end of this century. This paper focuses on the ability of Panama Canal management to extract additional toll revenues from United States grain traversing the Canal and the impact of increased toll rates on export grain flows. Analyses show toll rates established by a revenue-maximizing Canal management would exceed historical and current rates. A monopolizing Canal operator would have moderately increased Pacific port exports in the mid-1970Â’s; whereas, in the 1979-82 period, Pacific port flows would have exceeded historical levels.International Relations/Trade,
    • …
    corecore