2 research outputs found
The Periodic Signals of Nova V1674 Herculis (2021)
We present time-series photometry during eruption of the extremely fast nova V1674 Herculis (Nova Her 2021). The 2021 light curve showed periodic signals at 0.152921(3) d and 501.486(5) s, which we interpret as respectively the orbital and white dwarf spin-periods in the underlying binary. We also detected a sideband signal at the /difference/ frequency between these two clocks. During the first 15 days of outburst, the spin-period appears to have increased by 0.014(1)%. This increase probably arose from the sudden loss of high-angular-momentum gas ("the nova explosion") from the rotating, magnetic white dwarf. Both periodic signals appeared remarkably early in the outburst, which we attribute to the extreme speed with which the nova evolved (and became transparent to radiation from the inner binary). After that very fast initial increase of ~71 ms, the spin-period commenced a steady decrease of ~160 ms/year -- about 100x faster than usually seen in intermediate polars. This is probably due to high accretion torques from very high mass-transfer rates, which might be common when low-mass donor stars are strongly irradiated by a nova outburst.</p
Achieving thoracic oncology data collection in Europe: a precursor study in 35 countries
Background: A minority of European countries have participated in international comparisons with high level data on lung cancer. However, the nature and extent of data collection across the continent is simply unknown, and without accurate data collection it is not possible to compare practice and set benchmarks to which lung cancer services can aspire.
Methods: Using an established network of lung cancer specialists in 37 European countries, a survey was distributed in December 2014. The results relate to current practice in each country at the time, early 2015. The results were compiled and then verified with co-authors over the following months.
Results: Thirty-five completed surveys were received which describe a range of current practice for lung cancer data collection. Thirty countries have data collection at the national level, but this is not so in Albania, Bosnia-Herzegovina, Italy, Spain and Switzerland. Data collection varied from paper records with no survival analysis, to well-established electronic databases with links to census data and survival analyses.
Conclusion: Using a network of committed clinicians, we have gathered validated comparative data reporting an observed difference in data collection mechanisms across Europe. We have identified the need to develop a well-designed dataset, whilst acknowledging what is feasible within each country, and aspiring to collect high quality data for clinical research.</p