175 research outputs found

    Development of a low power reactive wireless chemical sensing network

    Get PDF

    Chemical event tracking using a low-cost wireless chemical sensing network

    Get PDF
    A recently developed low-cost light emitting diode (LED) chemical sensing technique is integrated with a Mica2Dot wireless communications platform to form a deployable wireless chemical event indicator network. The operation of the colorimetric sensing node has been evaluated to determine its reproducibility and limit of detection for an acidic airborne contaminant. A test-scale network of five similar chemical sensing nodes is deployed in a star communication topology at fixed points within a custom built Environmental Sensing Chamber (ESC). Presented data sets collected from the deployed wireless chemical sensor network (WCSN) show that during an acidic event scenario it is possible to track the plume speed and direction, and estimate the concentration of chemical plume by examining the collective sensor data relative to individual sensor node location within the monitored environment

    Measurement of representative landfill gas migration samples at landfill perimeters: a case study

    Get PDF
    This paper describes the development of a fully integrated autonomous system based on existing infrared sensing technology capable of monitoring landfill gas migration (specifically carbon dioxide and methane) at landfill sites. Sampling using the described system was validated against the industry standard, GA2000 Plus hand held device, manufactured by Geotechnical Instruments Inc. As a consequence of repeated sampling during validation experiments, fluctuations in the gas mixtures became apparent. This initiated a parallel study into what constitutes a representative sample of landfill gas migration as reported to the Environmental Protection Agency. The work described in this paper shows that gas mixture concentrations change with depth of extraction from the borehole well, but with evidence of a steady state after a time

    Monitoring of gas emissions at landfill sites using autonomous gas sensors

    Get PDF
    Executive Summary This report details the work carried out during the Smart Plant project (2005-AIC-MS-43-M4). As part of this research, an autonomous platform for monitoring greenhouse gases (methane (CH4), carbon dioxide (CO2)) has been developed, prototyped and field validated. The modular design employed means that the platform can be readily adapted for a variety of applications involving these and other target gases such as hydrogen sulfide (H2S), ammonia (NH3) and carbon monoxide (CO) and the authors are in the process of completing several short demonstrator projects to illustrate the potential of the platform for some of these applications. The field validation for the greenhouse gas monitoring platform was carried out at two landfill sites in Ireland. The unit was used to monitor the concentration of CO2 and CH4 gas at perimeter borehole wells. The final prototype was deployed for over 4 months and successfully extracted samples from the assigned perimeter borehole well headspace, measured them and sent the data to a database via a global system for mobile (GSM) communications. The data were represented via an updating graph in a web interface. Sampling was carried out twice per day, giving a 60-fold increase on current monitoring procedures which provide one gas concentration measurement per month. From additional work described in this report, a number of conclusions were drawn regarding lateral landfill gas migration on a landfill site and the management of this migration to the site’s perimeter. To provide frequent, reliable monitoring of landfill gas migration to perimeter borehole wells, the unit needs to: • Be fully autonomous; • Be capable of extracting a gas sample from a borehole well independently of personnel; • Be able to relay the data in near real time to a base station; and • Have sensors with a range capable of adequately monitoring gas events accurately at all times. The authors believe that a unit capable of such monitoring has been developed and validated. This unit provides a powerful tool for effective management of landfill site gases. The effectiveness of this unit has been recognised by the site management team at the long-term deployment trial site, and the data gathered have been used to improve the day-to-day operations and gas management system on-site. The authors make the following recommendations: 1. The dynamics of the landfill gas management system cannot be captured by taking measurements once per month; thus, a minimum sampling rate of once per day is advised. 2. The sampling protocol should be changed: (i) Borehole well samples should not be taken from the top of the well but should be extracted at a depth within the headspace (0.5–1.0 m). The measurement depth will be dependent on the water table and headspace depth within the borehole well. (ii) The sampling time should be increased to 3 min to obtain a steady-state measurement from the headspace and to take a representative sample; and (iii) For continuous monitoring on-site, the extracted sample should be recycled back into the borehole well. However, for compliance monitoring, the sample should not be returned to the borehole well. 3. Devices should be placed at all borehole wells so the balance on the site can be maintained through the gas management system and extraction issues can be quickly recognised and addressed before there are events of high gas migration to the perimeter. 4. A pilot study should be carried out by the EPA using 10 of these autonomous devices over three to five sites to show the need and value for this type of sampling on Irish landfill sites

    Automatic reaction to a chemical event detected by a low-cost wireless chemical sensing network

    Get PDF
    A test-scale wireless chemical sensor network (WCSN) has been deployed within a controlled Environmental Chamber (EC). The combined signals from the WCSN were used to initiate a controllable response to the detected chemical event. When a particular sensor response pattern was obtained, a purging cycle was initiated. Sensor data were continuously checked against user-defined action limits, to determine if a chemical event had occurred. An acidic contaminant was used to demonstrate the response of the sensor network. Once the acid plume was simultaneously detected by a number of wireless chemical sensor nodes, an automatic response action, which was the purging of the EC with clean air, was initiated and maintained for a period of time until the WCSN indicated that normal status had been re-established

    Additive BIO Fabrication: Impact, Opportunities and Challenges

    Get PDF
    In recent years we have outrun our ability to fabricate structures from the amazing materials that we can now create. While this can be said of many areas of materials research it is particularly so in the area of biomaterials. Here, we are often confronted with delicate compositions with nano- to microscopic features that will not survive the traditional (hammer and chisel) approach to fabrication. There is good reason why nature “grows” complex, highly functional structures. Such structures with functionality determined by the spatial distribution of composition with nanodimensional resolution can not be chiselled from a slab of material. Additive fabrication (AdFab), often referred to as 3D Printing, involves layer-by-layer deposition and fusion of materials to create customised structures. The structure to be produced can be conceptualised, manipulated and defined within a growing array of modelling environments; from conventional parametric Computer-Aided Design (CAD) solutions such as Solidworks™ or ProE™, through to free-form animation toolsets such as Autodesk 3ds Max™, and even free web-based applications like Tinkercad™ (www.tinkercad.com). Once a design is completed, a file that describes the structures’ surface geometry is generated and a set of digitised instructions then drives the printer to create the required structure layer by layer. The fabrication process can involve several deposition modes. In fused deposition modelling / extrusion printing, a molten build material is deposited and solidified on cooling. For higher resolution structures (layer thicknesses as low as 16 µm), a fluid material precursor is ink-jetted onto a substrate and simultaneously transformed into a solid structure via a chemical reaction (UV induced polymerisation). Metal structures can be fabricated through a physical micron-scale welding process known as selective laser melting

    The optimisation of a paired emitter-detector diode optical pH sensing device

    Get PDF
    With recent improvements in wireless sensor network hardware there has been a concurrent push to develop sensors that are suitable in terms of price and performance. In this paper a low cost gas sensor is detailed, and significant improvements in sensor characteristics have been achieved compared to previously published results. A chemical sensor is presented based on the use of low cost LEDs as both the light source and photodetector, coupled with a sensor slide coated with a pH sensitive colorimetric dye to create a simple gas sensor. Similar setups have been successfully used to detect both acetic acid and ammonia. The goal of this work was to optimise the system performance by integration of the sensing technique into a purposely deigned flowcell platform that holds the colorimetric slide and optical detector in position. The reproducibility of the sensor has been improved through this arrangement and careful control of deposited film thickness. The enhanced reproducibility between sensors opens the potential of calibration-free measurement, in that calibration of one sensor can be used to model the characteristics of all sensors in a particular batch

    A printed bio-mimetic fish for the detection of chemical pollutants in water bodies

    Get PDF
    Monitoring of chemical contaminants within the Environment operates predominantly through manual gathering of samples, transportation to centralised laboratories, and analysed by means of sophisticated instruments. This process is expensive and therefore faces limitations under the demands of current and forthcoming bodies of legislation, e.g. the Water Framework Directive. Recent technological breakthroughs have allowed for the realisation of static analytical systems capable of autonomously monitoring key chemical targets in situ. The challenge at present is to reduce the cost of such systems while meeting the demands of legislation. An alternative approach may exist in a moveable device capable of monitoring large water bodies using a single platform

    A wearable electrochemical sensor for the real-time measurement of sweat sodium concentration

    Get PDF
    We report a new method for the real-time quantitative analysis of sodium in human sweat, consolidating sweat collection and analysis in a single, integrated, wearable platform. This temporal data opens up new possibilities in the study of human physiology, broadly applicable from assessing high performance athletes to monitoring Cystic Fibrosis (CF) sufferers. Our compact Sodium Sensor Belt (SSB) consists of a sodium selective Ion Selective Electrode (ISE) integrated into a platform that can be interfaced with the human body during exercise. No skin cleaning regime or sweat storage technology is required as the sweat is continually wicked from the skin to a sensing surface and from there to a storage area via a fabric pump. Our results suggest that after an initial equilibration period, a steady-state sodium plateau concentration was reached. Atomic Absorption Spectroscopy (AAS) was used as a reference method, and this has confirmed the accuracy of the new continuous monitoring approach. The steady-state concentrations observed were found to fall within ranges previously found in the literature, which further validates the approach. Daily calibration repeatability (n 1⁄4 4) was +/- 3.0% RSD and over a three month period reproducibility was +/- 12.1% RSD (n 1⁄4 56). As a further application, we attempted to monitor the sweat of Cystic Fibrosis (CF) sufferers using the same device. We observed high sodium concentrations symptomatic of CF ($60 mM Na+) for two CF patients, with no conclusive results for the remaining patients due to their limited exercising capability, and high viscosity/low volume of sweat produced

    Video analysis of events within chemical sensor networks

    Get PDF
    This paper describes how we deploy video surveillance techniques to monitor the activities within a sensor network in order to detect environmental events. This approach combines video and sensor networks in a completely different way to what would be considered the norm. Sensor networks consist of a collection of autonomous, self-powered nodes which sample their environment to detect anything from chemical pollutants to atypical sound patterns which they report through an ad hoc network. In order to reduce power consumption nodes have the capacity to communicate with neighbouring nodes only. Typically these communications are via radio waves but in this paper the sensor nodes communicate to a base station through patterns emitted by LEDs and captured by a video camera. The LEDs are chemically coated to react to their environment and on doing so emit light which is then picked up by video analysis. There are several advantages to this approach and to demonstrate we have constructed a controlled test environment. In this paper we introduce and briefly describe this environment and the sensor nodes but focus mainly on the video capture, image processing and data visualisation techniques used to indicate these events to a user monitoring the network
    • …
    corecore