48 research outputs found

    Ethanol inhibits LPS-induced signaling and modulates cytokine production in peritoneal macrophages in vivo in a model for binge drinking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous reports indicate that ethanol, in a binge drinking model in mice, inhibits the production of pro-inflammatory cytokines in vivo. However, the inhibition of signaling through TLR4 has not been investigated in this experimental model in vivo. Considering evidence that signaling can be very different in vitro and in vivo, the present study was conducted to determine if effects of ethanol on TLR4 signaling reported for cells in culture or cells removed from ethanol treated mice and stimulated in culture also occur when ethanol treatment and TLR4 activation occur in vivo.</p> <p>Results</p> <p>Phosphorylated p38, ERK, and c-Jun (nuclear) were quantified with kits or by western blot using samples taken 15, 30, and 60 min after stimulation of peritoneal macrophages with lipopolysaccharide in vivo. Effects of ethanol were assessed by administering ethanol by gavage at 6 g/kg 30 min before administration of lipopolysaccharide (LPS). Cytokine concentrations in the samples of peritoneal lavage fluid and in serum were determined at 1, 2, and 6 hr after lipopolysaccharide administration. All of these data were used to measure the area under the concentration vs time curve, which provided an indication of the overall effects of ethanol in this system. Ethanol suppressed production of most pro-inflammatory cytokines to a similar degree as it inhibited key TLR4 signaling events. However, NF-κB (p65) translocation to the nucleus was not inhibited by ethanol. To determine if NF-κB composed of other subunits was inhibited, transgenic mice with a luciferase reporter were used. This revealed a reproducible inhibition of NF-κB activity, which is consistent with the observed inhibition of cytokines whose expression is known to be NF-κB dependent.</p> <p>Conclusion</p> <p>Overall, the effects of ethanol on signalling in vivo were similar to those reported for in vitro exposure to ethanol and/or lipopolysaccharide. However, inhibition of the activation of NF-κB was not detected as translocation of p65 to the nucleus but was detected using transgenic reporter mice. The observation that ethanol given 24 hr before dosing with LPS modulated production of some cytokines indicates a persistent effect which does not require continued presence of ethanol.</p

    Transcriptomic Analysis of Peritoneal Cells in a Mouse Model of Sepsis: Confirmatory and Novel Results in Early and Late Sepsis.

    Get PDF
    Background The events leading to sepsis start with an invasive infection of a primary organ of the body followed by an overwhelming systemic response. Intra-abdominal infections are the second most common cause of sepsis. Peritoneal fluid is the primary site of infection in these cases. A microarray-based approach was used to study the temporal changes in cells from the peritoneal cavity of septic mice and to identify potential biomarkers and therapeutic targets for this subset of sepsis patients. Results We conducted microarray analysis of the peritoneal cells of mice infected with a non-pathogenic strain of Escherichia coli. Differentially expressed genes were identified at two early (1 h, 2 h) and one late time point (18 h). A multiplexed bead array analysis was used to confirm protein expression for several cytokines which showed differential expression at different time points based on the microarray data. Gene Ontology based hypothesis testing identified a positive bias of differentially expressed genes associated with cellular development and cell death at 2 h and 18 h respectively. Most differentially expressed genes common to all 3 time points had an immune response related function, consistent with the observation that a few bacteria are still present at 18 h. Conclusions Transcriptional regulators like PLAGL2, EBF1, TCF7, KLF10 and SBNO2, previously not described in sepsis, are differentially expressed at early and late time points. Expression pattern for key biomarkers in this study is similar to that reported in human sepsis, indicating the suitability of this model for future studies of sepsis, and the observed differences in gene expression suggest species differences or differences in the response of blood leukocytes and peritoneal leukocytes

    Investigation of the Role of TNF-α Converting Enzyme (TACE) in the Inhibition of Cell Surface and Soluble TNF-α Production by Acute Ethanol Exposure

    Get PDF
    Toll-like receptors (TLRs) play a fundamental role in the immune system by detecting pathogen associated molecular patterns (PAMPs) to sense host infection. Ethanol at doses relevant for humans inhibits the pathogen induced cytokine response mediated through TLRs. The current study was designed to investigate the mechanisms of this effect by determining whether ethanol inhibits TLR3 and TLR4 mediated TNF-α secretion through inhibition of transcription factor activation or post-transcriptional effects. In NF-κB reporter mice, activation of NF-κB in vivo by LPS was inhibited by ethanol (LPS alone yielded 170,000±35,300 arbitrary units of light emission; LPS plus ethanol yielded 56,120±16880, p = 0.04). Inhibition of protein synthesis by cycloheximide revealed that poly I:C- or LPS-induced secreted TNF-α is synthesized de novo, not released from cellular stores. Using real time RT-PCR, we found inhibition of LPS and poly I:C induced TNF-α gene transcription by ethanol. Using an inhibitor of tumor necrosis factor alpha converting enzyme (TACE), we found that shedding caused by TACE is a prerequisite for TNF-α release after pathogen challenge. Flow cytometry was used to investigate if ethanol decreases TNF-α secretion by inhibition of TACE. In cells treated with LPS, ethanol decreased both TNF-α cell surface expression and secretion. For example, 4.69±0.60% of untreated cells were positive for cell surface TNF-α, LPS increased this to 25.18±0.85%, which was inhibited by ethanol (86.8 mM) to 14.29±0.39% and increased by a TACE inhibitor to 57.88±0.62%. In contrast, cells treated with poly I:C had decreased secretion of TNF-α but not cell surface expression. There was some evidence for inhibition of TACE by ethanol in the case of LPS, but decreased TNF-α gene expression seems to be the major mechanism of ethanol action in this system

    Induction of humoral immune response to multiple recombinant Rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission

    Get PDF
    BACKGROUND: Rhipicephalus appendiculatus is the primary vector of Theileria parva, the etiological agent of East Coast fever (ECF), a devastating disease of cattle in sub-Saharan Africa. We hypothesized that a vaccine targeting tick proteins that are involved in attachment and feeding might affect feeding success and possibly reduce tick-borne transmission of T. parva. Here we report the evaluation of a multivalent vaccine cocktail of tick antigens for their ability to reduce R. appendiculatus feeding success and possibly reduce tick-transmission of T. parva in a natural host-tick-parasite challenge model. METHODS: Cattle were inoculated with a multivalent antigen cocktail containing recombinant tick protective antigen subolesin as well as two additional R. appendiculatus saliva antigens: the cement protein TRP64, and three different histamine binding proteins. The cocktail also contained the T. parva sporozoite antigen p67C. The effect of vaccination on the feeding success of nymphal and adult R. appendiculatus ticks was evaluated together with the effect on transmission of T. parva using a tick challenge model. RESULTS: To our knowledge, this is the first evaluation of the anti-tick effects of these antigens in the natural host-tick-parasite combination. In spite of evidence of strong immune responses to all of the antigens in the cocktail, vaccination with this combination of tick and parasite antigens did not appear to effect tick feeding success or reduce transmission of T. parva. CONCLUSION: The results of this study highlight the importance of early evaluation of anti-tick vaccine candidates in biologically relevant challenge systems using the natural tick-host-parasite combination

    Thymus-derived glucocorticoids are insufficient for normal thymus homeostasis in the adult mouse

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is unclear if thymus-derived glucocorticoids reach sufficient local concentrations to support normal thymus homeostasis, or if adrenal-derived glucocorticoids from the circulation are required. Modern approaches to this issue (transgenic mice that under or over express glucocorticoid receptor in the thymus) have yielded irreconcilably contradictory results, suggesting fundamental problems with one or more the transgenic mouse strains used. In the present study, a more direct approach was used, in which mice were adrenalectomized with or without restoration of circulating corticosterone using timed release pellets. Reversal of the increased number of thymocytes caused by adrenalectomy following restoration of physiological corticosterone concentrations would indicate that corticosterone is the major adrenal product involved in thymic homeostasis.</p> <p>Results</p> <p>A clear relationship was observed between systemic corticosterone concentration, thymus cell number, and percentage of apoptotic thymocytes. Physiological concentrations of corticosterone in adrenalectomized mice restored thymus cell number to normal values and revealed differential sensitivity of thymocyte subpopulations to physiological and stress-inducible corticosterone concentrations.</p> <p>Conclusion</p> <p>This indicates that thymus-derived glucocorticoids are not sufficient to maintain normal levels of death by neglect in the thymus, but that apoptosis and possibly other mechanisms induced by physiological, non stress-induced levels of adrenal-derived corticosterone are responsible for keeping the total number of thymocytes within the normal range.</p

    Investigation of the role of TNF-a converting enzyme (TACE) in the inhibition of cell surface and soluble TNF-a production by acute ethanol exposure.

    Get PDF
    Toll-like receptors (TLRs) play a fundamental role in the immune system by detecting pathogen associated molecular patterns (PAMPs) to sense host infection. Ethanol at doses relevant for humans inhibits the pathogen induced cytokine response mediated through TLRs. The current study was designed to investigate the mechanisms of this effect by determining whether ethanol inhibits TLR3 and TLR4 mediated TNF-? secretion through inhibition of transcription factor activation or post-transcriptional effects. In NF-?B reporter mice, activation of NF-?B in vivo by LPS was inhibited by ethanol (LPS alone yielded 170,000?35,300 arbitrary units of light emission; LPS plus ethanol yielded 56,120?16880, p = 0.04). Inhibition of protein synthesis by cycloheximide revealed that poly I:C- or LPS-induced secreted TNF-? is synthesized de novo, not released from cellular stores. Using real time RT-PCR, we found inhibition of LPS and poly I:C induced TNF-? gene transcription by ethanol. Using an inhibitor of tumor necrosis factor alpha converting enzyme (TACE), we found that shedding caused by TACE is a prerequisite for TNF-? release after pathogen challenge. Flow cytometry was used to investigate if ethanol decreases TNF-? secretion by inhibition of TACE. In cells treated with LPS, ethanol decreased both TNF-? cell surface expression and secretion. For example, 4.69?0.60% of untreated cells were positive for cell surface TNF-?, LPS increased this to 25.18?0.85%, which was inhibited by ethanol (86.8 mM) to 14.29?0.39% and increased by a TACE inhibitor to 57.88?0.62%. In contrast, cells treated with poly I:C had decreased secretion of TNF-? but not cell surface expression. There was some evidence for inhibition of TACE by ethanol in the case of LPS, but decreased TNF-? gene expression seems to be the major mechanism of ethanol action in this system

    TLR4, ethanol, and lipid rafts: a new mechanism of ethanol action with implications for other receptor-mediated effects

    No full text
    Ethanol (EtOH) is the most widely abused substance in the United States, and it contributes to well-documented harmful (at high dosages) and beneficial (at low dosages) changes in inflammatory and immune responses. Lipid rafts have been implicated in the regulation and activation of several important receptor complexes in the immune system, including the TLR4 complex. Many questions remain about the precise mechanisms by which rafts regulate the assembly of these receptor complexes. Results summarized in this review indicate that EtOH acts by altering the LPS-induced redistribution of components of the TLR4 complex within the lipid raft and that this is related to changes in actin cytoskeleton rearrangement, receptor clustering, and subsequent signaling. EtOH provides an example of an immunomodulatory drug that acts at least in part by modifying lipid rafts, and it could represent a model to probe the relationships between rafts, receptor complexes, and signaling
    corecore