112 research outputs found
Clinical decision-making: An essential skill for 21st century pharmacy pratice
Clinical decision-making skills are recognized as a central component of professional competency but are underdeveloped
in pharmacy compared to other health professions. There is an urgent need for a comprehensive
understanding of how pharmacists can best develop and use therapeutic decision-making skills in clinical
practice. The aims of this commentary are to define clinical decision-making in pharmacy practice, and to
present a model for clinical decision-making that aligns with a philosophical framework for pharmacy practice.
The model has utility in education programs for pharmacists and provides a framework for understanding patient-
facing clinical services in practice.Peer Reviewe
An Evaluation of a Factor Xa-Based Clotting Time Test for Enoxaparin: A Proof-of-Concept Study
A well-accepted test for monitoring anticoagulation by enoxaparin is not currently available. As inadequate dosing may result in thrombosis or bleeding, a clinical need exists for a suitable test. Previous in silico and in vitro studies have identified factor Xa as an appropriate activating agent, and the phospholipid Actin FS as a cofactor for a Xa clotting time (TenaCT) test. A proof-of-concept study was designed to (1) explore the reproducibility of the TenaCT test and (2) explore factors that could affect the performance of the test. In vitro clotting time tests were carried out using plasma from 20 healthy volunteers. The effect of enoxaparin was determined at concentrations of 0.25, 0.50, and 1.0 IU/mL. Clotting times for the volunteers were significantly prolonged with increasing enoxaparin concentrations. Clotting times were significantly shortened for frozen plasma samples. No significant differences in prolongation of clotting times were observed between male and female volunteers or between the 2 evaluated age groups. The clotting times were consistent between 2 separate occasions. The TenaCT test was able to distinguish between the subtherapeutic and therapeutic concentrations of enoxaparin. Plasma should not be frozen prior to performing the test, without defining a frozen plasma reference range. This study provided proof-of-concept for a Xa-based test that can detect enoxaparin dose effects, but additional studies are needed to further develop the test
Development of a parsimonious design for optimal classification of exclusive breastfeeding
A deuterium oxide dose‐to‐mother (DTM) technique is used to determine if an infant is exclusive breastfeeding (EBF). However, the DTM method is intensive, requiring seven paired mother–infant samples during a 14‐day study period. The purpose of this study was to develop a field‐friendly protocol. Data from 790 mother–infant pairs from nine countries were analyzed using a Markov chain Monte Carlo method with Stan. The data were split into (i) model building (565 pairs) and (ii) design evaluation (225 pairs). EBF classification was based on a previously published cut‐off for nonmilk water intake. Classification based on the full design was the reference (gold standard classification). The receiver operating characteristics of parsimonious designs were used to determine an optimal parsimonious classification method. The best two postdose windows (days 7–9 and 13–14) yielded optimal categorization with similar performance in the design evaluation data. This postdose two‐sample design provided 95% sensitivity and specificity when compared with the full design
Development of a nonlinear hierarchical model to describe the disposition of deuterium in mother-infant pairs to assess exclusive breastfeeding practice
The World Health Organization recommends exclusive breastfeeding (EBF) for the first 6 months after birth. The deuterium oxide dose-to-the-mother (DTM) technique is used to distinguish EBF based on a cut-off (< 25 g/day) of water intake from sources other than breastmilk. This value is based on a theoretical threshold and has not been verified in field studies. The aim of this study was to estimate the water intake cut-off value that can be used to define EBF practice. One hundred and twenty-one healthy infants, aged 2.5-5.5 months who were deemed to be EBF were recruited. After administration of deuterium to the mothers, saliva was sampled from mother and infant pairs over a 14-day period. Validation of infant feeding practices was conducted via home observation over six non-consecutive days with caregiver recall. A fully Bayesian framework using a gradient-based Markov chain Monte Carlo approach implemented in Stan was used to estimate the cut-off of non-milk water intake of EBF infants. From the original data set, 113 infants were determined to be EBF and provided 1500 paired mother-infant observations. The deuterium saliva concentrations were best described by two linked 1-compartment models (mother and infant), with body weight as a covariate on the mother's volume of distribution and infant's body weight on infant's water clearance rate. The cut-off value was based on the 90th percentile of the posterior distribution of non-milk water intake and was 86.6 g/day. This cut-off value can be used in future field studies in other geographic regions to determine exclusivity of breast feeding practices in order to determine their potential public health needs
Optimal designs for population pharmacokinetic studies of oral artesunate in patients with uncomplicated falciparum malaria
<p>Abstract</p> <p>Background</p> <p>Currently, population pharmacokinetic (PK) studies of anti-malarial drugs are designed primarily by the logistical and ethical constraints of taking blood samples from patients, and the statistical models that are fitted to the data are not formally considered. This could lead to imprecise estimates of the target PK parameters, and/or designs insufficient to estimate all of the parameters. Optimal design methodology has been developed to determine blood sampling schedules that will yield precise parameter estimates within the practical constraints of sampling the study populations. In this work optimal design methods were used to determine sampling designs for typical future population PK studies of dihydroartemisinin, the principal biologically active metabolite of oral artesunate.</p> <p>Methods</p> <p>Optimal designs were derived using freely available software and were based on appropriate structural PK models from an analysis of data or the literature and key sampling constraints identified in a questionnaire sent to active malaria researchers (3-4 samples per patient, at least 15 minutes between samples). The derived optimal designs were then evaluated via simulation-estimation.</p> <p>Results</p> <p>The derived optimal sampling windows were 17 to 29 minutes, 30 to 57 minutes, 2.5 to 3.7 hours and 5.8 to 6.6 hours for non-pregnant adults; 16 to 29 minutes, 31 minutes to 1 hour, 2.0 to 3.4 hours and 5.5 to 6.6 hours for designs with non-pregnant adults and children and 35 to 59 minutes, 1.2 to 3.4 hours, 3.4 to 4.9 hours and 6.0 to 8.0 hours for pregnant women. The optimal designs resulted in acceptable precision of the PK parameters.</p> <p>Conclusions</p> <p>The proposed sampling designs in this paper are robust and efficient and should be considered in future PK studies of oral artesunate where only three or four blood samples can be collected.</p
Safety Profile of L-Arginine Infusion in Moderately Severe Falciparum Malaria
BACKGROUND: L-arginine infusion improves endothelial function in malaria but its safety profile has not been described in detail. We assessed clinical symptoms, hemodynamic status and biochemical parameters before and after a single L-arginine infusion in adults with moderately severe malaria. METHODOLOGY AND FINDINGS: In an ascending dose study, adjunctive intravenous L-arginine hydrochloride was infused over 30 minutes in doses of 3 g, 6 g and 12 g to three separate groups of 10 adults hospitalized with moderately severe Plasmodium falciparum malaria in addition to standard quinine therapy. Symptoms, vital signs and selected biochemical measurements were assessed before, during, and for 24 hours after infusion. No new or worsening symptoms developed apart from mild discomfort at the intravenous cannula site in two patients. There was a dose-response relationship between increasing mg/kg dose and the maximum decrease in systolic (ρ = 0.463; Spearman's, p = 0.02) and diastolic blood pressure (r = 0.42; Pearson's, p = 0.02), and with the maximum increment in blood potassium (r = 0.70, p<0.001) and maximum decrement in bicarbonate concentrations (r = 0.53, p = 0.003) and pH (r = 0.48, p = 0.007). At the highest dose (12 g), changes in blood pressure and electrolytes were not clinically significant, with a mean maximum decrease in mean arterial blood pressure of 6 mmHg (range: 0–11; p<0.001), mean maximal increase in potassium of 0.5 mmol/L (range 0.2–0.7 mmol/L; p<0.001), and mean maximal decrease in bicarbonate of 3 mEq/L (range 1–7; p<0.01) without a significant change in pH. There was no significant dose-response relationship with blood phosphate, lactate, anion gap and glucose concentrations. All patients had an uncomplicated clinical recovery. CONCLUSIONS/SIGNIFICANCE: Infusion of up to 12g of intravenous L-arginine hydrochloride over 30 minutes is well tolerated in adults with moderately severe malaria, with no clinically important changes in hemodynamic or biochemical status. Trials of adjunctive L-arginine can be extended to phase 2 studies in severe malaria. TRIAL REGISTRATION: ClinicalTrials.gov NCT0014736
Impaired nitric oxide bioavailability and l-arginine–reversible endothelial dysfunction in adults with falciparum malaria
Severe falciparum malaria (SM) is associated with tissue ischemia related to cytoadherence of parasitized erythrocytes to microvascular endothelium and reduced levels of NO and its precursor, l-arginine. Endothelial function has not been characterized in SM but can be improved by l-arginine in cardiovascular disease. In an observational study in Indonesia, we measured endothelial function using reactive hyperemia–peripheral arterial tonometry (RH-PAT) in 51 adults with SM, 48 patients with moderately severe falciparum malaria (MSM), and 48 controls. The mean RH-PAT index was lower in SM (1.41; 95% confidence interval [CI] = 1.33–1.47) than in MSM (1.82; 95% CI = 1.7–2.02) and controls (1.93; 95% CI = 1.8–2.06; P < 0.0001). Endothelial dysfunction was associated with elevated blood lactate and measures of hemolysis. Exhaled NO was also lower in SM relative to MSM and controls. In an ascending dose study of intravenous l-arginine in 30 more patients with MSM, l-arginine increased the RH-PAT index by 19% (95% CI = 6–34; P = 0.006) and exhaled NO by 55% (95% CI = 32–73; P < 0.0001) without important side effects. Hypoargininemia and hemolysis likely reduce NO bioavailability. Endothelial dysfunction in malaria is nearly universal in severe disease, is reversible with l-arginine, and likely contributes to its pathogenesis. Clinical trials in SM of adjunctive agents to improve endothelial NO bioavailability, including l-arginine, are warranted
Paroxetine in human milk
Aims The primary aims of the study were to estimate the exposure of infants to paroxetine via breast milk and to determine the maternal milk:plasma ratio (M/P) of paroxetine. Secondary aims were to compare single point and area under the curve (AUC) estimates of M/P, to assess variability of M/P in fore and hind milk, and to compare the observed M/P with that predicted by a model. Methods Two studies were performed. In one study, six nursing mothers who were being treated with paroxetine were studied over a 24 h dose interval at steady-state. The total amount of paroxetine in the milk was measured, which represented the 'dose' to the infant. The M/P AUC was calculated and compared with a predicted value. In the second study, four nursing mothers who were being treated with paroxetine, were studied at steady-state, around a normal infant feeding time. A single plasma sample and a prefeed milk sample were taken approximately 3 h after the morning dose of paroxetine, and a postfeed milk sample taken around 1 h later. The dose received by the infant was estimated from the average milk concentrations of the pre and postfeed samples using standard assumptions, and M/P calculated directly. Plasma concentrations of paroxetine were measured in 8 of the 10 infants in the two studies. Results The mean dose of paroxetine received by the infants in the first study was 1.13% (range 0.5-1.7) of the weight adjusted maternal dose. The mean M/P AUC was 0.39 (range 0.32-0.51). The predicted M/P was 0.22. The mean dose of paroxetine received by the infants in the second study was 1.25% (range 0.38-2.24) of the weight adjusted maternal dose. The mean M/P was 0.96 (range 0.31-3.33) and did not differ between fore and hind milk. The drug was not detected in the plasma of seven of the infants studied and was detected but not quantifiable (<4 mg l −1 ) in one infant. No adverse effects were observed in any of the infants. Conclusions Measured M/P and estimated infant dose were similar in the two studies, although the range was wider for the single point study. Paroxetine can be considered 'safe' during breast feeding because the dose transferred to the infant is well below the recommended safety limit of 10% of the weight adjusted maternal dose, concentrations in the infants were generally undetectable, and no adverse effects were reported
Increased Asymmetric Dimethylarginine in Severe Falciparum Malaria: Association with Impaired Nitric Oxide Bioavailability and Fatal Outcome
Asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase (NOS), is a predictor of mortality in critical illness. Severe malaria (SM) is associated with decreased NO bioavailability, but the contribution of ADMA to the pathogenesis of impaired NO bioavailability and adverse outcomes in malaria is unknown. In adults with and without falciparum malaria, we tested the hypotheses that plasma ADMA would be: 1) increased in proportion to disease severity, 2) associated with impaired vascular and pulmonary NO bioavailability and 3) independently associated with increased mortality. We assessed plasma dimethylarginines, exhaled NO concentrations and endothelial function in 49 patients with SM, 78 with moderately severe malaria (MSM) and 19 healthy controls (HC). Repeat ADMA and endothelial function measurements were performed in patients with SM. Multivariable regression was used to assess the effect of ADMA on mortality and NO bioavailability. Plasma ADMA was increased in SM patients (0.85 µM; 95% CI 0.74–0.96) compared to those with MSM (0.54 µM; 95%CI 0.5–0.56) and HCs (0.64 µM; 95%CI 0.58–0.70; p<0.001). ADMA was an independent predictor of mortality in SM patients with each micromolar elevation increasing the odds of death 18 fold (95% CI 2.0–181; p = 0.01). ADMA was independently associated with decreased exhaled NO (rs = −0.31) and endothelial function (rs = −0.32) in all malaria patients, and with reduced exhaled NO (rs = −0.72) in those with SM. ADMA is increased in SM and associated with decreased vascular and pulmonary NO bioavailability. Inhibition of NOS by ADMA may contribute to increased mortality in severe malaria
- …