732 research outputs found
Coronae of Stars with Super Solar Elemental Abundances
Coronal elemental abundances are known to deviate from the photospheric
values of their parent star, with the degree of deviation depending on the
First Ionization Potential (FIP). This study focuses on the coronal composition
of stars with super-solar photospheric abundances. We present the coronal
abundances of six such stars: 11 LMi, Hor, HR 7291, Boo, and
Cen A and B. These stars all have high-statistics X-ray spectra, three
of which are presented for the first time. The abundances measured in this
paper are obtained using the line-resolved spectra of the Reflection Grating
Spectrometer (RGS) in conjunction with the higher throughput EPIC-pn camera
spectra on board the XMM-Newton observatory. A collisionally ionized plasma
model with two or three temperature components is found to represent the
spectra well. All elements are found to be consistently depleted in the coronae
compared to their respective photospheres. For 11 LMi and Boo no FIP
effect is present, while Hor, HR 7291, and Cen A and B show a
clear FIP trend. These conclusions hold whether the comparison is made with
solar abundances or the individual stellar abundances. Unlike the solar corona
where low FIP elements are enriched, in these stars the FIP effect is
consistently due to a depletion of high FIP elements with respect to actual
photospheric abundances. Comparing to solar abundances (instead of stellar)
yields the same fractionation trend as on the Sun. In both cases a similar FIP
bias is inferred, but different fractionation mechanisms need to be invoked.Comment: 11 pages, 7 figures, submitted to A&A. Comments are welcom
Variable geometry inlet design for scram jet engine
The present invention relates to an improved variable geometry inlet for a scram jet engine having at least one combustor module. The variable geometry inlet comprises each combustor module having two sidewalls. Each of the sidewalls has a central portion with a thickness and a tapered profile forward of the central portion. The tapered profile terminates in a sharp leading edge. The variable geometry inlet further comprises each module having a lower wall and a movable cowl flap positioned forward of the lower wall. The movable cowl flap has a leading edge and the leading edges of the sidewalls intersect the leading edge of the cowl flap
Conformational effects of nucleotide exchange in ras p21 proteins as studied by fluorescence spectroscopy
AbstractThe intrinsic fluorescence properties of the oncogene protein p21N-ras, p21H-ras and one of its transforming mutants, p21N-ras (Va1112), have been investigated. A mutant containing a single tryptophan at position 28 in p21H-ras (Trp28) has been specifically engineered to provide a probe of protein conformation on nucleotide binding. The proteins produced essentially similar circular dichroism spectra typical of alpha/beta proteins. A decrease in the intensity of the fluorescence emission spectrum due to tyrosine occurred on GDP/GTP nucleotide exchange in the native and mutant proteins. Selective excitation of the single tryptophan in p21 produced a decrease in fluorescence intensity which was accompanied by a blue shift in the wavelength of maximum emission on nucleotide exchange. A reduction in the residual Mg2+ ion concentration enhanced this effect
Alternative Strategies for Exploring Mars and the Moons of Mars
The human exploration of Mars represents one of civilizations next major challenges and is an enterprise that would confirm the potential of humans to leave our home planet system and make our way outward into the cosmos. As exploration endeavors begin to set sights beyond low-Earth orbit, exploration of the surface of Mars continues to serve as the horizon destination to help focus technology development and research efforts. Recent thoughts on exploration follow a flexible path approach beginning with missions which do not extend down into planetary gravity wells including surface exploration. Consistent with that flexible path strategy is the notion of exploring the moons of Mars, namely Phobos and Deimos, prior to exploring the surface. The premise behind this thought is that exploring Mars moons would be less costly and risky since these missions would avoid the difficulties associated with landing on the surface and subsequent ascent back to orbit. A complete assessment of this strategy has not been performed in the context of the flexible path approach and is needed to clearly understand all of the advantages and disadvantages. This paper examines the strategic implications of human exploration of the moons of Mars as a potential prelude to surface exploration. Various operational concepts for Phobos and Deimos exploration that include the infusion of different propulsion technologies are assessed in terms of mission duration, technologies required, overall risk and difficulty, and operational construct. Finally, the strategic implications of each concept are assessed to determine the overall key challenges and strategic links to other key flexible path destinations
Low False-Positive Rate of Kepler Candidates Estimated From A Combination Of Spitzer And Follow-Up Observations
(Abridged) NASA's Kepler mission has provided several thousand transiting
planet candidates, yet only a small subset have been confirmed as true planets.
Therefore, the most fundamental question about these candidates is the fraction
of bona fide planets. Estimating the rate of false positives of the overall
Kepler sample is necessary to derive the planet occurrence rate. We present the
results from two large observational campaigns that were conducted with the
Spitzer telescope during the the Kepler mission. These observations are
dedicated to estimating the false positive rate (FPR) amongst the Kepler
candidates. We select a sub-sample of 51 candidates, spanning wide ranges in
stellar, orbital and planetary parameter space, and we observe their transits
with Spitzer at 4.5 microns. We use these observations to measures the
candidate's transit depths and infrared magnitudes. A bandpass-dependent depth
alerts us to the potential presence of a blending star that could be the source
of the observed eclipse: a false-positive scenario. For most of the candidates
(85%), the transit depths measured with Kepler are consistent with the depths
measured with Spitzer as expected for planetary objects, while we find that the
most discrepant measurements are due to the presence of unresolved stars that
dilute the photometry. The Spitzer constraints on their own yield FPRs between
5-40%, depending on the KOIs. By considering the population of the Kepler field
stars, and by combining follow-up observations (imaging) when available, we
find that the overall FPR of our sample is low. The measured upper limit on the
FPR of our sample is 8.8% at a confidence level of 3 sigma. This observational
result, which uses the achromatic property of planetary transit signals that is
not investigated by the Kepler observations, provides an independent indication
that Kepler's false positive rate is low.Comment: 33 pages, 16 figures, 3 tables; accepted for publication in ApJ on
February 7, 201
Nonthermal Hard X-ray Emission and Iron Kalpha Emission from a Superflare on II Pegasi
We report on an X-ray flare detected on the active binary system II~Pegasi
with the Swift telescope. The trigger had a 10-200 keV luminosity of
2.2 erg s-- a superflare, by comparison with energies of
typical stellar flares on active binary systems. The trigger spectrum indicates
a hot thermal plasma with T180 K. X-ray spectral analysis
from 0.8--200 keV with the X-Ray Telescope and BAT in the next two orbits
reveals evidence for a thermal component (T80 K) and Fe K 6.4
keV emission. A tail of emission out to 200 keV can be fit with either an
extremely high temperature thermal plasma (TK) or power-law
emission. Based on analogies with solar flares, we attribute the excess
continuum emission to nonthermal thick-target bremsstrahlung emission from a
population of accelerated electrons. We estimate the radiated energy from
0.01--200 keV to be erg, the total radiated energy over
all wavelengths erg, the energy in nonthermal electrons above 20
keV erg, and conducted energy erg. The
nonthermal interpretation gives a reasonable value for the total energy in
electrons 20 keV when compared to the upper and lower bounds on the thermal
energy content of the flare. This marks the first occasion in which evidence
exists for nonthermal hard X-ray emission from a stellar flare. We investigate
the emission mechanism responsible for producing the 6.4 keV feature, and find
that collisional ionization from nonthermal electrons appears to be more
plausible than the photoionization mechanism usually invoked on the Sun and
pre-main sequence stars.Comment: 41 pages, 7 figures, accepted for publication in the Astrophysical
Journa
Identifying Effects and Applications of Fixed and Variable Speed Limits
In Indiana, distracted driving and unexpected queues have led to an increase in the amount of back-of-queue crashes, particularly on approach to work zones. This report presents new strategies for the assessment of both transportation safety and traffic operations using crowd-sourced probe vehicle data and a speed laser vehicle re-identification scheme. This report concludes by recommending strategies for the placement of variable speed limits (VSL) adjacent to work zones and suggestions for future research
Applying artificial intelligence to big data in hepatopancreatic and biliary surgery: a scoping review
Aim: Artificial Intelligence (AI) and its applications in healthcare are rapidly developing. The healthcare industry generates ever-increasing volumes of data that should be used to improve patient care. This review aims to examine the use of AI and its applications in hepatopancreatic and biliary (HPB) surgery, highlighting studies leveraging large datasets.Methods: A PRISMA-ScR compliant scoping review using Medline and Google Scholar databases was performed (5th August 2022). Studies focusing on the development and application of AI to HPB surgery were eligible for inclusion. We undertook a conceptual mapping exercise to identify key areas where AI is under active development for use in HPB surgery. We considered studies and concepts in the context of patient pathways - before surgery (including diagnostics), around the time of surgery (supporting interventions) and after surgery (including prognostication).Results: 98 studies were included. Most studies were performed in China or the USA (n = 45). Liver surgery was the most common area studied (n = 51). Research into AI in HPB surgery has increased rapidly in recent years, with almost two-thirds published since 2019 (61/98). Of these studies, 11 have focused on using “big data” to develop and apply AI models. Nine of these studies came from the USA and nearly all focused on the application of Natural Language Processing. We identified several critical conceptual areas where AI is under active development, including improving preoperative optimization, image guidance and sensor fusion-assisted surgery, surgical planning and simulation, natural language processing of clinical reports for deep phenotyping and prediction, and image-based machine learning.Conclusion: Applications of AI in HPB surgery primarily focus on image analysis and computer vision to address diagnostic and prognostic uncertainties. Virtual 3D and augmented reality models to support complex HPB interventions are also under active development and likely to be used in surgical planning and education. In addition, natural language processing may be helpful in the annotation and phenotyping of disease, leading to new scientific insights
- …